CS 598: Al Methods for Market Design Lecture 8: Matching Markets

Xintong Wang
Spring 2024

Outline

- One-sided matching
- Two-sided matching
- Kidney-paired donation
- Project discussion

Outline

- One-sided matching
- Two-sided matching
- Kidney-paired donation
- Project discussion

One-Sided Matching

- Agents have strict preferences on items
- Items (indivisible) do not have preferences on agents
- No item is assigned more than once

One-Sided Matching

- Agents have strict preferences on items
- Items (indivisible) do not have preferences on agents
- No item is assigned more than once

Examples: assign classrooms to courses, dorm rooms to students, tasks to volunteers

Example: The Draw

The mechanism that assigns students to dorms

Example: The Draw

The mechanism that assigns students to dorms:

1. Each student submits a ranked list, ordering dorms from most to least preferred
2. Each student is assigned a number in $\{1,2, \ldots, \mathrm{~N}\}$
3. For $\mathrm{i}=1,2, \ldots, \mathrm{~N}$:

Student i is assigned to her favorite choice among options that are still available

Example: The Draw

The mechanism that assigns students to dorms:

1. Each student submits a ranked list, ordering dorms from most to least preferred
2. Each student is assigned a number in $\{1,2, \ldots, \mathrm{~N}\}$
3. For $\mathrm{i}=1,2, \ldots, \mathrm{~N}$:

Student i is assigned to her favorite choice among options that are still available

Is the Draw a good mechanism?

Example: The Draw

Strategy proof

Pareto optimal

Example: The Draw

Strategy proof: the property of a mechanism that being truthful is always the best strategy, i.e., lying about your preferences cannot make you better off

Pareto optimal: the property of an outcome that you can't make anyone better off without making someone else worse off

Example: The Draw

The Draw is strategy-proof and Pareto optimal.

Example: The Draw

The Draw is strategy-proof and Pareto optimal.

Proof (strategy-proof):
(1) The report of agent i will not affect agents before her (i.e., agents with better priority).
(2) By truthful report, agent i will receive the most preferred item of those still available.

Example: The Draw

The Draw is strategy-proof and Pareto optimal.

Proof (Pareto optimal):
Prove by induction and contradiction. Assume there's an assignment X^{\prime} that Pareto dominates current X .
(1) Base: $i=0$, both empty assignment $X^{\prime}(0)=X(0)$
(2) Inductive hypothesis: the first i-1 students are assigned identically in X^{\prime} and X
(3) Inductive step: in X^{\prime}, student i must also get her favorite option among those remaining, so $\mathrm{X}^{\prime}=\mathrm{X}$.

Serial Dictatorship

The mechanism used in the Draw is called serial dictatorship

Serial dictatorship

- Order the agents
- In this order, allow each agent to dictate their favorite feasible option

Serial Dictatorship

The mechanism used in the Draw is called serial dictatorship

Serial dictatorship

- Order the agents
- In this order, allow each agent to dictate their favorite feasible option

How about fairness?

Outline

- One-sided matching
- Two-sided matching
- Kidney-paired donation
- Project discussion

Two-Sided Matching

- Two sets of agents, with each member in one set having strict preferences over each member of the other
- A matching: each agent is assigned to at most one agent on the other side

Examples: college admissions, medical students to residencies, job market, dating apps...

Example: College Admission

What do you think about current system?
Things to consider as an applicant:

- How many colleges to apply to?
- Should I apply for early admission?
- Should I accept an offer or wait for my waitlist?

Example: College Admission

What do you think about current system?
Things to consider as an applicant:

- How many colleges to apply to?
- Should I apply for early admission?
- Should I accept an offer or wait for my waitlist?

Things to consider as a college admission officer:

- How can I get good students?
- How can I get the right number of students?

Example: National Resident Matching Program (NRMP)

- 1900-1945: matching in an ad hoc, decentralized way
- In 1945, residency offers are extended to medical students by the end of their first year!
- Unraveling: make offers early to get strong candidates

Example: National Resident Matching Program (NRMP)

- 1900-1945: matching in an ad hoc, decentralized way
- In 1945, residency offers are extended to medical students by the end of their first year!
- Unraveling: make offers early to get strong candidates
- 1945: release admission decision on the same date, early in the final year of medical school
- First choice declines, and all other good candidates accept offers from other programs
- Exploding offers

Example: National Resident Matching Program (NRMP)

- 1900-1945: matching in an ad hoc, decentralized way
- In 1945, residency offers are extended to medical students by the end of their first year!
- Unraveling: make offers early to get strong candidates
- 1945: release admission decision on the same date, early in the final year of medical school
- First choice declines, and all other good candidates accept offers from other programs
- Exploding offers
- 1952 until today: a centralized matching algorithm

Illustrative Example

Boys

Jake
Jenny > Claire > Holly
Ed
Claire > Holly > Jenny
Ray
Claire > Jenny > Holly

Girls

- Claire

Jake > Ray > Ed
Jenny
Ray > Jake > Ed
Holly
Jake > Ray > Ed

Illustrative Example

Boys
 Girls

Jake
Jenny > Claire > Holly
Ed

Claire > Holly > Jenny
Ray

Claire > Jenny > Holly

Claire

Jake > Ray > Ed
Jenny
Ray > Jake > Ed
Holly
Jake > Ray > Ed

What is the problem with the current matching?

Illustrative Example

Boys Girls

Stable Matching

- A matching: each agent assigned to at most one agent on the other side
- A stable matching is a matching with no blocking pair
- A blocking pair: two agents who prefer each other to their assigned role in the matching

Stable Matching

- Do stable matchings exist?
- Are they easy to find?
- Are stable matching unique?
- Does stability matter?

We'll study these questions through the Gale-Shapley
(1962) deferred acceptance (DA) algorithm

Boy-Proposing Deferred Acceptance

The boy-proposing DA proceeds in rounds:

- (Round 1)

Each boy proposes to their most preferred girl.
Each girl tentatively accepts the most preferred proposal and rejects the rest.

- (Round $r>1$)

Each boy whose proposal was rejected in the previous round makes a proposal to their next most preferred girl.
Each girl who has received a new proposal tentatively accepts the most preferred proposal so far and rejects the rest.
Terminates when no new proposals are made, and tentative matches become final.

Boy-Proposing Deferred Acceptance

Round 1 Boys Girls

Boy-Proposing Deferred Acceptance

Round 1 Boys Girls

Boy-Proposing Deferred Acceptance

Round 2

 Boys Girls

Boy-Proposing Deferred Acceptance

Final

> Boys Girls

Source: https://en.wikipedia.org/wiki/Gale-Shapley_algorithm

Proposal pool

Preferences

$\square \rightarrow \bigcirc$				
	\square	Acceptor Table		
1	1	3	2	4
2	3	4	1	2
2	4	2	3	1
3	4			
4	3	2	1	4

$\bigcirc \rightarrow \square$				
	Proposor Table			
(1)	2	1	3	4
(2)	4	1	2	3
(3)	1	3	2	4
(4)	2	3	1	4

Source: https://en.wikipedia.org/wiki/Gale-Shapley_algorithm

Round 1

Proposal pool

Preferences

Source: https://en.wikipedia.org/wiki/Gale-Shapley_algorithm

Round 2

Proposal pool

- 1, the only un-attached membe makes its offer to 1 , its first preference not previously proposed to.

Preferences

$\square \rightarrow \bigcirc$				
	Acceptor Table			
1	1	3	2	4
2	3	4	1	2
3	4	2	3	1
4	3	2	1	4

$\bigcirc \rightarrow \square$				
	Proposor Table			
(1)	2	1	3	4
(2)	4	1	2	3
(3)	1	3	2	4
(4)	2	3	1	4

Source: https://en.wikipedia.org/wiki/Gale-Shapley_algorithm

- 1 drops 3's propsal in favour of as this is higher in its preference table. 3 returns to the proposal pool.

Preferences

$\square \rightarrow \bigcirc$				
	\square	Acceptor Table		
1	1	3	2	4
2	3	4	1	2
2	4	2	3	1
4	3	2	1	4

$\bigcirc \rightarrow \square$				
	Proposor Table			
(1)	2	1	3	4
(2)	4	1	2	3
(3)	1	3	2	4
(4)	2	3	1	4

Proposal pool

Preferences

	$\square \rightarrow \bigcirc$					$\bigcirc \rightarrow \square$			
1	1	3	2	4	(1)	2	1	3	4
2	3	4	1	2	(2)	4	1	2	3
3	4	2	3	1	(3)	1	3	2	4
4	3	2	1	4	(4)	2	3	1	4

Source: https://en.wikipedia.org/wiki/Gale-Shapley_algorithm

Proposal pool

- 3 accepts 3 , not having a bette। offer

Preferences

	Acceptor Table				
1	1	3	3	2	4
2	3		4	1	2
3	4		2	3	1
4	3		2	1	4

$\bigcirc \rightarrow \square$				
	Proposor Table			
(1)	2	1	3	4
(2)	4	1	2	3
(3)	1	3	2	4
(4)	2	3	1	4

Source: https://en.wikipedia.org/wiki/Gale-Shapley_algorithm

Final

Proposors Acceptors

- No two members $\{P, A\}$ would prefer one-another over their current pairing

Preferences

Source: https://en.wikipedia.org/wiki/Gale-Shapley_algorithm

Boy-Proposing Deferred Acceptance

The boy-proposing DA proceeds in rounds:

- (Round 1)

Each boy proposes to their most preferred girl.
Each girl tentatively accepts the most preferred proposal and rejects the rest.

- (Round $r>1$)

Each boy whose proposal was rejected in the previous round makes a proposal to their next most preferred girl.
Each girl who has received a new proposal tentatively accepts the most preferred proposal so far and rejects the rest.
Terminates when no new proposals are made, and tentative matches become final.

Stable Matching

- Do stable matchings exist?
- Are they easy to find?
- Does stability matter?
- Are stable matching unique?

We'll study these questions through the Gale-Shapley
(1962) deferred acceptance (DA) algorithm

Analysis: Boy-Proposing DA

Fact 0:
Each girl is matched with a weakly more preferred boy across each round.

Intuition:
By design, girls only accept a new offer if it is better than the current offer they hold (if any).

Analysis: Termination of DA

Fact 1:
Deferred acceptance terminates.

Intuition:
In any round $r>1$, at least one proposal was rejected in the previous round.
No proposal is repeated and there is a finite number of proposals.

Analysis: Existence of Stable Matching

Fact 2:
The boy-proposing DA algorithm terminates with a stable matching

Proof by contradiction:

- Suppose (b, g') is a blocking pair in current DA matching with $\left\{(\mathrm{b}, \mathrm{g}),\left(\mathrm{b}^{\prime}, \mathrm{g}^{\prime}\right), \ldots\right\}$
- Because b prefers g^{\prime} to g, then b must have proposed to g^{\prime} before g
- Because g^{\prime} is paired with b^{\prime}, then g^{\prime} prefers b^{\prime} to b
- So $\left(b, g^{\prime}\right)$ is not a blocking pair to $\left\{(b, g),\left(b^{\prime}, g^{\prime}\right), \ldots\right\}$

Analysis: Computation of DA

Fact 3:
The DA algorithm runs in $O(\mathrm{mn})$ rounds for m boys and n girls.

Intuition:
Each boy makes proposals in order of their strict preferences, and keeps track of the girls who have rejected them.

This requires at most n constant-time updates for each boy.

Stable Matching

- Do stable matchings exist? YES
- Are they easy to find? YES
- Are stable matching unique?
- Does stability matter?

We'll study these questions through the Gale-Shapley
(1962) deferred acceptance (DA) algorithm

Girl-Proposing Deferred Acceptance

Girl-Proposing Deferred Acceptance

Round 1

Boys Girls	Jake	Claire
Jenny $>$ Claire $>$ Holly	Jake $>$ Ray $>$ Ed	
Ed	Jenny	
Claire $>$ Holly $>$ Jenny	Holly	
Ray	Jake $>$ Ray $>$ Ed	

Girl-Proposing Deferred Acceptance

Round 1 Boys Girls

| Jake | Claire |
| :--- | :--- | :--- |
| Jenny $>$ Claire > Holly | Jake $>$ Ray $>$ Ed |
| Ed | Ray $>$ Jake $>$ Ed |
| Claire $>$ Holly $>$ Jenny | Holly |
| Ray | Jake $>$ Ray $>$ Ed |

Girl-Proposing Deferred Acceptance

Round 2

Boys Girls

Girl-Proposing Deferred Acceptance

Round 2

Boys Girls

Girl-Proposing Deferred Acceptance

Round 3

Boys Girls

Jake

Jenny > Claire > Holly
Ed
Claire > Holly > Jenny
Ray

Claire > Jenny > Holly

Jake > Ray > Ed
Jenny
Ray > Jake > Ed
Holly
Jake > Ray > Ed

Girl-Proposing Deferred Acceptance

Final

Boys Girls

Jake

Jenny > Claire > Holly
Ed
Claire > Holly > Jenny
Ray

Claire > Jenny > Holly

Claire
Jake > Ray > Ed
Jenny
Ray > Jake > Ed
Holly
Jake > Ray > Ed

Boy-Proposing Deferred Acceptance

Final

> Boys Girls

Stable Matching

- Do stable matchings exist? YES
- Are they easy to find? YES
- Are stable matching unique? NO, then who propose
- Does stability matter?

We'll study these questions through the Gale-Shapley
(1962) deferred acceptance (DA) algorithm

Achievable Outcomes

Girl g is achievable for b if b and g match in some stable matching.

E.g., $\{\mathrm{g}, \mathrm{g}$ ' $\}$ are achievable for b

Strategic Analysis: Who Propose

Given truthful reports, in boy-proposing DA:

1. Each boy matches with his most preferred, achievable girl
2. Each girl is matched to her least preferred, achievable boy

And vice versa for girl-proposing DA

Strategic Analysis: Who Propose

Given truthful reports, in boy-proposing DA:

1. Each boy matches with his most preferred, achievable girl
Proof by contradiction:

- Assume b is rejected by his most preferred, achievable g who is in favor of b^{\prime}
- By achievable outcome, exists $\left\{(b, g),\left(b^{\prime}, g^{\prime}\right)\right\}$ for some g'
- Since b^{\prime} prefers g, $\left(b^{\prime}, g\right)$ is a blocking pair. Not stable.

Strategic Analysis: Who Propose

Given truthful reports, in boy-proposing DA:
2. Each girl is matched to her least preferred, achievable boy
Prove by contradiction:

- Given (b, g), assume b' is more preferred than b, then b will be rejected
- Boy b will not be an achievable boy for g

Strategic Analysis: Who Propose

- Is truthful reporting a dominant strategy for proposers?
- YES! Proof Sketch:
- If truthful, boy b is matched to his most-preferred, achievable girl
- You cannot do better

Strategic Analysis: Who Propose

- Is truthful reporting a dominant strategy for proposers?
- YES! Proof Sketch:
- If truthful, boy b is matched to his most-preferred, achievable girl
- You cannot do better
- Is truthful reporting a dominant strategy for acceptors?
- NO! Let's look at an example...

Strategic Analysis: Who Propose

Boys Girls

Strategic Analysis: Who Propose

Boys
Jake
Jenny > Claire > Holly
Ed
Claire > Holly > Jenny
Ray
Claire > Jenny > Holly

Girls

- Claire Jake > Ed > Ray take $>$ Ray $>$ Ed

Jenny
Ray > Jake > Ed
Holly
Jake > Ray > Ed

Strategic Analysis: Who Propose

Boys Girls

Strategic Analysis: Who Propose

- Is truthful reporting a dominant strategy for proposers?
- YES! Proof Sketch:
- If truthful, boy b is matched to his most-preferred, achievable girl
- You cannot do better
- Is truthful reporting a dominant strategy for acceptors?
- NO! No matching mechanism is stable and (fully) strategy-proof $:$

Real-World Matching Markets

Hospital-proposing Student-proposing (w/ two-body problem)

Market	Stable	Still in use (stopped unraveling)
U.S. NRMP ('52,''98)	yes	yes
Edinburgh ('69)	yes	yes
Cardiff	yes	yes
Birmingham	no	no
Edinburgh ('67-'69)	no	no
Newcastle	no	no
Sheffield	no	no
Cambridge	no	yes
London Hospital	no	yes
U.S. medical specialties	yes	yes $(\sim 30$ markets,
		1 failure $)$
U.S. Osteopaths $(<' 94)$	no	no
U.S. Osteopaths $(\geq ' 94)$	yes	yes

Stable Matching

- Do stable matchings exist? YES
- Are they easy to find? YES
- Are stable matching unique? NO, then who propose
- Does stability matter? YES

We'll study these questions through the Gale-Shapley
(1962) deferred acceptance (DA) algorithm

Outline

- One-sided matching
- Two-sided matching
- Kidney-paired donation
- Project discussion

Kidney-Paired Donation

- Kidney failure is a serious medical problem
- Preferred treatment: kidney transplant
- Cadaver kidneys or live kidney donation
- Match based on blood-type and tissue-type compatibility

Kidney-Paired Donation

Waiting list candidates as of 03/07/2024

88,942 people

are waiting for a kidney transplant in the US.

In 2023,
39,680 patients received cadaver kidneys
6,950 patients received living donor kidneys

Kidney-Paired Donation

- Incompatible pairs arrive at the matching market
- (Donor, Patient)
- Participate in swaps or cycles
- E.g., (Sick with blood type A, Healthy with blood type B) (Sick with blood type B, Healthy with blood type A)

Kidney-Paired Donation

- How is the matching different?
- 0/1 preferences: either compatible or not
- Constraints: transplants at the same time, limit cycle size
- A weighted objective: medical priorities

Matching Representations

edge from i to j : patient i wants donor j's kidney
(Source: Conitzer) 74

Market Clearing Problem

- Try to cover as many vertices as possible with (vertex-)disjoint cycles of length at most k

Market Clearing Problem

- Try to cover as many vertices as possible with (vertex-)disjoint cycles of length at most k

Market Clearing Problem (k=2)

- Try to cover as many vertices as possible with (vertex-)disjoint cycles of length at most k

1. If edges go both directions, replace by an undirected edge
2. Remove other edges
3. Maximum matching problem (max \#edges with every vertex incident on at most one edge)

Market Clearing Problem (k= $=\infty$)

$$
\begin{aligned}
\max _{z} & \sum_{(i, j) \in E} z_{i j} \\
\text { s.t. } & \sum_{j} z_{i j} \leq 1, \quad \text { if } \mathrm{i} \text { gets j's kidney, } 0 \text { otherwise } \\
& \sum_{j} z_{i j}=\sum_{j} z_{j i}, \quad \text { for all } j \\
& z_{i j} \geq 0, \quad \text { for all } i, j
\end{aligned}
$$

No need to force integer! Polynomial time

Market Clearing Problem (general k)

- For each cycle c of length at most k, make a binary variable x_{c}
- 1 if all edges on this cycle are used, 0 otherwise
- Integer programming

$$
\begin{aligned}
\max _{X_{c}} & \sum_{c \in C}|c| x_{c} \\
\text { s.t. } & \sum_{c \in C, v \in c} x_{c} \leq 1 \quad \forall v \in V \\
& x_{c} \in\{0,1\} \quad \forall c \in C \\
& \text { NP-hard! }
\end{aligned}
$$

Announcements

- Two paper presentations next week
- Peer evaluation for paper presentation
- HW1 is due today 11:59pm!
- Discuss final project guidelines. Feel free to discuss your idea with me during office hour
- Class survey instead of pre-class CQ

