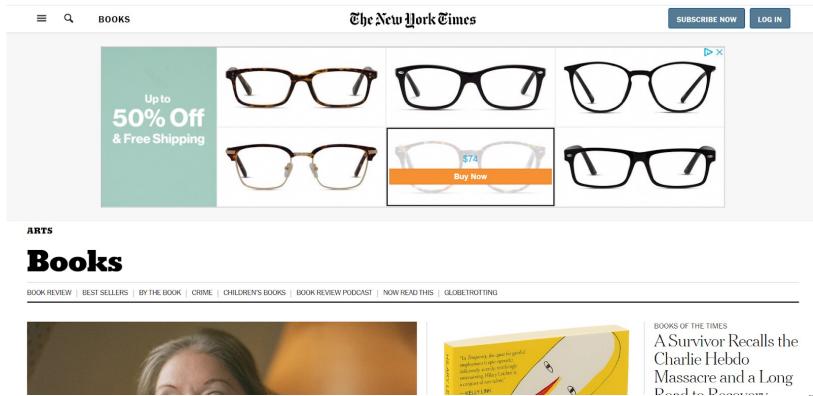

CS 598: Al Methods for Market Design

Lecture 7: Advertising Markets

Xintong Wang Spring 2024


Two Forms of Online Ads

 Search advertising: sponsored search auction that sells ad space adjacent to search results

Two Forms of Online Ads

 Contextual advertising: targeting based on the content and user information

Position Auction

- The position auction assigns ads to positions and determines payments
 - M positions for N bidders / advertisers
- An advertiser i's value is associated with a user click
 - value-per-click (w_i) & bid-per-click (b_i)
- The auction models / predicts the click-through rate, i.e., the probability of clicking an ad when displayed in a particular position

Early Sponsored Search

- Rank ads by bid-per-click and use first price auction
- Can you see the problem of such design?

Modeling Click-Through Rates

- CTR_{ij} : the predicted CTR for the ad from bidder i in position j
- The separable CTR with a position effect and a quality effect

$$CTR_{ij} = pos_j \cdot Q_i$$

The value to bidder i showing an ad in position j is

$$v_{ij} = CTR_{ij} \cdot w_i = pos_j \cdot Q_i \cdot w_i$$

The effective bid from bidder i for showing an ad in position j

$$b_{ij} = CTR_{ij} \cdot b_i = pos_j \cdot Q_i \cdot b_i$$

Modeling Click-Through Rates

- CTR_{ij} : the predicted CTR for the ad from bidder i in position j
- The separable CTR with a position effect and a quality effect

$$CTR_{ij} = pos_j \cdot Q_i$$

The value to bidder i showing an ad in position j is

$$v_{ij} = CTR_{ij} \cdot w_i = pos_j \cdot Q_i \cdot w_i$$

The effective bid from bidder i for showing an ad in position j

$$b_{ij} = CTR_{ij} \cdot b_i = pos_j \cdot Q_i \cdot b_i$$

• Quick fix: rank ads by quality-adjusted bid, i.e., $Q_i \cdot b_i$

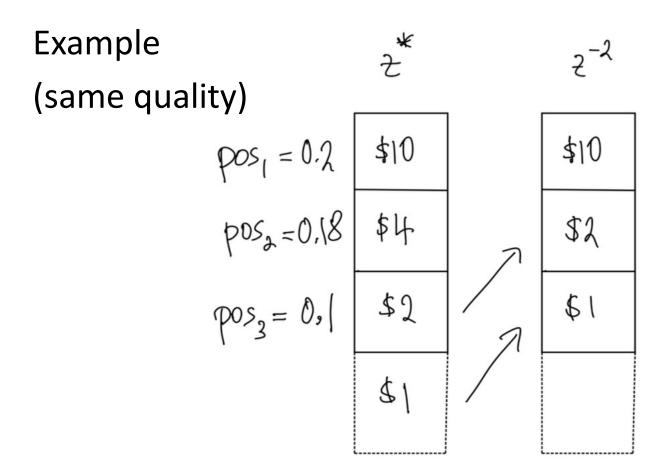
VCG Position Auction

Given bids-per-click $b=(b_1,\ldots,b_n)$ and ad quality $Q_i\in[0,1]$ for each bidder

- Allocation rule: rank bidders in decreasing order of $Q_i \cdot b_i$ and assign positions in this order (denote z^*)
- Payment rule that charges bidder $i \ (i < m)$

$$t_{\text{vcg},i}(b) = \sum_{j \neq i} \hat{v}_j(z^{-i}) - \sum_{j \neq i} \hat{v}_j(z^*) = \sum_{k=[i]+1}^{m+1} (pos_{k-1} - pos_k)Q_{(k)} \cdot b_{(k)}$$

- [i]: position assigned to bidder i
- (k): the bidder assigned to position k


VCG Position Auction

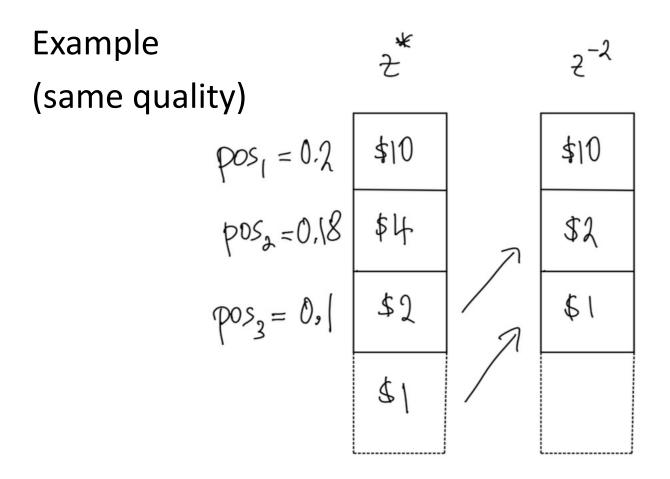
Theorem. The VCG position auction is strategy-proof and allocatively-efficient.

That is solving

$$\max_{z} \sum_{i \in N} pos_{z_i} \cdot Q_i \cdot b_i$$

VCG Position Auction

What is the **price-per-click** for Agent 2 with \$2 value-per-click?


Generalized Second-Price Auction

Given bids-per-click $b = (b_1, ..., b_n)$ and ad quality $Q_i \in [0, 1]$ for each bidder

- Allocation rule: rank bidders in decreasing order of $Q_i \cdot b_i$ and assign positions in this order (denote z^*)
- Payment rule that charges bidder $i \ (i \le m)$
 - All bids have same quality: $p_{\mathrm{gsp},i}(b) = b_{([i]+1)}$
 - Bids have different quality:

$$p_{\text{gsp},i}(b) = \frac{Q_{([i]+1)} \cdot b_{([i]+1)}}{Q_i}$$

Generalized Second-Price Auction

What is the price-per-click for Agent 2 with \$2 value-per-click?

Comparing VCG & GSP

position	position effect	value-per-click	bid-per-click	VCG price	GSP price
1	0.2	10	10	17/10	4
2	0.18	4	4	13/9	2
3	0.1	2	2	1	1
_	0	1	1	0	0

- GSP charges more than VCG
- VCG: a bid has the effect of moving every lower-ranked bid down by one position
- GSP: a bid prevents the next highest bid from getting any click, but has no effect on other bids

Generalized Second-Price Auction

Theorem: The GSP auction is not strategy-proof

$$pos_1 = 0.2$$
 \$10
 $pos_2 = 0.18$ \$4
 $pos_3 = 0.1$ \$2
\$1

What would be a beneficial deviation for Agent 1?

- Truthful utility by bidding \$10:
 0.2*(10-4) = 1.2
- Utility by bidding \$3:
 0.18*(10-2) = 1.44

Auction Designs for Online Ads (2022)

	Non real-time	Real-time (programmatic)
Sponsored	o Google search and Microsoft Bing	n/a
\mathbf{search}	GSP (was first price)	
	\circ Yandex	
	VCG (was GSP)	
Contextual	Own inventory	3rd-party inventory (ad exchanges)
	∘ Twitter and Facebook feeds	• Microsoft Xandr,
	VCG	Twitter,
		AppLovin, and
	3rd-party inventory (ad networks)	Google Marketing Platform
	o Google AdSense	FPSB (some were SPSB)
	FPSB (was VCG, earlier GSP)	
	o FB Audience Network	
	FPSB	

Privacy and Fairness Considerations

An ad may reveal something private

Ads may be unfairly targeted

 An advertiser or the platform may learn sensitive info from a click on targeted ads

Regulatory Actions

Fair Information Practice Principles (FIPPs) in the U.S. in 1973

- Notice: no secret collection of data
- Choice: prevent information that is gathered for one use being used for another
- Access: inspect, review, and amend data about themselves
- Security: data is stored securely
- Redress: firms are responsible for damages when information is misused

Regulatory Actions

General Data Protection Regulation (GDPR) by EU in 2018

- Delete: request that personal data be erased when no longer needed
- Data portability: receive personal data in machine-readable format and send it to another company
- Algorithmic accountability: request that significant decisions based on personal data are not made solely by computers

Announcements

- Three paper presentations today! None next week
 - Get ready with peer evaluation form
- HW1 is due next Monday! If work in pairs, both students should submit their (same) writeup
- Discuss final project guidelines. Feel free to discuss your idea with me during office hour
- Class survey instead of pre-class CQ for next week