CS 598: Al Methods for Market Design Lecture 6: Mechanism Design II

Xintong Wang
Spring 2024

Announcements

- One paper presentation today! Three for next week
- Evaluation for paper presentation
- HW1 is out! Please start early

Outline

- Recap: design desiderata
- The VCG mechanism
- Optimal auctions

Outline

- Recap: design desiderata
- The VCG mechanism
- Optimal auctions

Mechanism Desiderata

- Pareto optimality
- Allocative efficiency
- Strategy proofness
- Individual rationality equilibrium strategy
- No deficit
- Budget balance

Outline

- Recap: design desiderata
- The VCG mechanism
- Optimal auctions

VCG Mechanism

- The Vickrey-Clarke-Groves (VCG) mechanism
- A DRM that achieves many good properties
- Strategy-proof (incentive compatible)
- Allocative efficient (welfare maximizing)
- Individually rational

VCG Mechanism

Given reported valuation profile $\hat{v}=\left(\widehat{v_{1}}, \ldots, \widehat{v_{n}}\right)$, the VCG mechanism on a set of alternatives A is defined by

- A choice rule

$$
x(\widehat{v})=\operatorname{argmax}_{a \in A} \sum_{i \in N} \widehat{v}_{i}(a)
$$

with selected alternative $\mathrm{a}^{*}=x(\hat{v})$

VCG Mechanism

Given reported valuation profile $\hat{v}=\left(\widehat{v_{1}}, \ldots, \widehat{v_{n}}\right)$, the VCG mechanism on a set of alternatives A is defined by

- A choice rule

$$
x(\hat{v})=\operatorname{argmax}_{a \in A} \sum_{i \in N} \widehat{v}_{i}(a)
$$

with selected alternative $\mathrm{a}^{*}=x(\hat{v})$

- A payment rule: charge agent i

$$
t_{i}(\hat{v})=\max _{\mathrm{a}^{-i} \in A^{-i}} \sum_{j \neq \mathrm{i}} \widehat{v}_{j}\left(a^{-i}\right)-\sum_{j \neq \mathrm{i}} \widehat{v}_{j}\left(a^{*}\right)
$$

| $\begin{array}{l}\text { Opportunity cost } \\ \text { incurred by agent } i\end{array}$ |
| :--- |\(=\begin{aligned} \& The max total value to

\& others without agent i\end{aligned}-$$
\begin{aligned} & \text { The total value to others } \\
& \text { under } a^{*} \text { without agent } i\end{aligned}
$$\)
A^{-i} denotes the set of alternatives when agent i is not present

VCG Mechanism

Example: VCG mechanism on a single item

- Alternatives: "do not allocation" \& "allocate to each agent"
- Three agents with their bids $\$ 10, \$ 8, \$ 4$ for the item
- The choice rule is $x(\hat{v})=\operatorname{argmax}_{a \in A}\left(\widehat{v_{1}}(a)+\widehat{v_{2}}(a)+\widehat{v_{3}}(a)\right)$
- The payment rule

Agent 1: $t_{1}(\hat{v})=$ max total value $\mathrm{w} / \mathrm{o} 1-$ current total value $\mathrm{w} / \mathrm{o} 1$

$$
=8-0=8
$$

Agent 2: $t_{2}(\hat{v})=$ max total value $\mathrm{w} / \mathrm{o} 2-$ current total value w/o 2

$$
=10-10=0
$$

VCG Mechanism

Example: VCG mechanism on a single item Second-price auction

- Alternatives: "do not allocation" \& "allocate to each agent"
- Three agents with their bids $\$ 10, \$ 8, \$ 4$ for the item
- The choice rule is $x(\hat{v})=\operatorname{argmax}_{a \in A}\left(\widehat{v_{1}}(a)+\widehat{v_{2}}(a)+\widehat{v_{3}}(a)\right)$
- The payment rule

Agent 1: $t_{1}(\hat{v})=$ max total value $\mathrm{w} / \mathrm{o} 1-$ current total value $\mathrm{w} / \mathrm{o} 1$

$$
=8-0=8 \quad \text { Pivotal: } a^{-i} \neq a^{*}
$$

Agent 2: $t_{2}(\hat{v})=$ max total value w/o $2-$ current total value w/o 2

$$
=10-10=0
$$

$$
\text { Non-pivotal: } a^{-i}=a^{*}
$$

VCG Mechanism

Example: VCG mechanism, scheduling

	9am	10am	11am
Agent 1	-5	1	2
Agent 2	20	5	10
Agent 3	5	11	2

What would be the selected alternative?
What would be the payment for each agent?

VCG Mechanism

Theorem: The VCG mechanism is strategy-proof, allocative efficient, and individually rational.

VCG Mechanism

Theorem: The VCG mechanism is strategy-proof, allocative efficient, and individually rational.

Proof (strategy-proof): Being truthful is dominant strategy.

1) Fix other reports $v_{-i} ; a$ is the selected alternative under $\left(v_{i}, v_{-i}\right)$ $v_{i}(a)-\left(\max _{a^{-i} \in A^{-i}} \sum_{\mathrm{j} \neq i} v_{j}\left(a^{-i}\right)-\sum_{j \neq i} v_{j}(a)\right)=\sum_{i} v_{i}(a)-\max _{a^{-i} \in A^{-i}} \sum_{\mathrm{j} \neq i} v_{j}\left(a^{-i}\right)$
2) Fix other reports $v_{-i} ; a^{\prime}$ is the selected alternative under $\left(v_{i}^{\prime}, v_{-i}\right)$
$v_{i}\left(a^{\prime}\right)-\left(\max _{a^{-i} \in A^{-i}} \sum_{\mathrm{j} \neq i} v_{j}\left(a^{-i}\right)-\sum_{j \neq i} v_{j}\left(a^{\prime}\right)\right)=\sum_{i} v_{i}\left(a^{\prime}\right)-\max _{a^{-i} \in A^{-i}} \sum_{j \neq i} v_{j}\left(a^{-i}\right)$
$\sum_{i} v_{i}(a)-\sum_{i} v_{i}\left(a^{\prime}\right)=\max _{a \in A}\left(v_{i}(a)+\sum_{j \neq i} v_{j}(a)\right)-\left(v_{i}\left(a^{\prime}\right)+\sum_{j \neq i} v_{j}\left(a^{\prime}\right)\right) \geq 0$

VCG Mechanism

Theorem: The VCG mechanism is strategy-proof, allocative efficient, and individually rational.

Proof (allocative efficiency):
This is by construction: $x(\hat{v})=\operatorname{argmax}_{a \in A} \sum_{i} v_{i}(a)$

VCG Mechanism

Theorem: The VCG mechanism is strategy-proof, allocative efficient, and individually rational.

Proof (individual rationality): Agent i's utility of truthfulness
$v_{i}(a)-\left(\max _{a^{-i} \in A^{-i}} \sum_{\mathrm{j} \neq i} v_{j}\left(a^{-i}\right)-\sum_{j \neq i} v_{j}(a)\right)$
$=\sum_{i} v_{i}(a)-\max _{\mathrm{a}^{-i} \in A^{-i}} \sum_{\mathrm{j} \neq i} v_{j}\left(a^{-i}\right)$
$\geq \sum_{i} v_{i}(a)-\max _{a^{-i} \in A^{-i}} \sum_{i} v_{i}\left(a^{-i}\right)$
≥ 0

VCG Mechanism

Recap with some more comments:

- Choose a welfare maximizing outcome
- Charge each agent i the welfare had agent i not participate minus the welfare of everyone else given agent i participates
- Charge each agent the "harm" it does on the welfare of everyone else (i.e., externality)

Computational Aspects of VCG

Computational Aspects of VCG

Example: Two items, three bidders

- A wants one apple and is willing to pay $\$ 5$
- B wants one apple and is willing to pay $\$ 2$
- C wants two apples and is willing to pay $\$ 6$ for both but is uninterested in buying one without the other

Computational Aspects of VCG

Example: Two items, three bidders

- A wants one apple and is willing to pay $\$ 5$
- B wants one apple and is willing to pay $\$ 2$
- C wants two apples and is willing to pay $\$ 6$ for both but is uninterested in buying one without the other

Outcome:
A and B get the two apples
A pays $\$ 4=\$ 6$ (max value w/o A) - $\$ 2$ (current value w/o A)
B pays $\$ 1=\$ 6$ (max value $w / o B$) - $\$ 5$ (current value $w / o B$)

Computational Aspects of VCG

Example: Two items, three bidders

- A wants one apple and is willing to pay $\$ 5$
- B wants one apple and is willing to pay $\$ 2$
- C wants two apples and is willing to pay $\$ 6$ for both but is uninterested in buying one without the other

What is the computational complexity of finding the welfaremaximizing outcome?

Computational Aspects of VCG

Example: Two items, three bidders

- A wants one apple and is willing to pay $\$ 5$
- B wants one apple and is willing to pay $\$ 2$
- C wants two apples and is willing to pay $\$ 6$ for both but is uninterested in buying one without the other

What is the computational complexity of finding the welfaremaximizing outcome? A knapsack problem!
$\operatorname{maximize} \sum_{i=1}^{n} v_{i} x_{i}$
subject to $\sum_{i=1}^{n} w_{i} x_{i} \leq W$ and $x_{i} \in\{0,1\}$

Computational Aspects of VCG

Example: Two items, three bidders

- A wants one apple and is willing to pay $\$ 5$
- B wants one apple and is willing to pay $\$ 2$
- C wants two apples and is willing to pay $\$ 6$ for both but is uninterested in buying one without the other

What is the computational complexity of finding the welfaremaximizing outcome? A knapsack problem!
$\operatorname{maximize} \sum_{i=1}^{n} v_{i} x_{i}$
subject to $\sum_{i=1}^{n} w_{i} x_{i} \leq W$ and $x_{i} \in\{0,1\} \quad \begin{aligned} & w_{1}=1 \\ & W=2\end{aligned}$
$n=3$ bidders
$v_{1}=5, v_{2}=2, v_{3}=6$
$w_{1}=1 w_{2}=1, w_{3}=2$

Computational Aspects of VCG

- Compute the welfare-maximizing outcome is NP-hard
- Communication cost of each agent's valuation function
- Allocate m items to n participants
- Each agent's valuation function consists 2^{m} numbers
- Communication requirement is then $n 2^{m}$

Outline

- Recap: design desiderata
- The VCG mechanism
- Optimal auctions

Optimal Auctions

- Efficient auctions so far
- What about maximizing the seller's expected revenue?
- May be willing to risk failing to sell the item

Optimal Auctions: Setting

Auctions in an independent private value settings

- Risk-neutral bidders with private valuations
- Each agent's valuation v_{i} is independently drawn from a strictly increasing $\operatorname{cdf} F_{i}(\cdot)$ with a continuous pdf $f_{i}(\cdot)$
- Allow $F_{i} \neq F_{j}$: asymmetric auctions
- The risk-neutral seller knows each F_{i} and has no value for the object

Optimal Auctions: Definition

The auction that maximizes the expected revenue subject to individual rationality and Bayesian incentive compatibility for the buyers is an optimal auction

Primer: One Bidder and One Item

- A posted-price mechanism: The seller announces a price r, and the buyer can either pay the price and take the item or pay nothing and get nothing
- Given a private valuation v, how should we set a welfare-maximizing posted price r ?

Primer: One Bidder and One Item

- A posted-price mechanism: The seller announces a price r, and the buyer can either pay the price and take the item or pay nothing and get nothing
- Given a private valuation v, how should we set a welfare-maximizing posted price r ? $r=0$

Primer: One Bidder and One Item

- A posted-price mechanism: The seller announces a price r, and the buyer can either pay the price and take the item or pay nothing and get nothing
- Given a private valuation v, how should we set a welfare-maximizing posted price r ? $r=0$
- Given a private valuation v, how should we set a revenue-maximizing posted price r ?

Primer: One Bidder and One Item

- Given a private valuation v, how should we set a revenue-maximizing posted price r ?
We assume $v \sim F$, where the distribution is known but the realization v is private
The expected revenue: $r \cdot(1-F(r))$
Revenue of a sale

$$
\text { Prob of a sale }=\operatorname{Pr}(v \geq r)
$$

When $\mathrm{v} \sim U[0,1], F(x)=x . r=\frac{1}{2}$ and $\mathrm{E}[\mathrm{rev}]=\frac{1}{4}$ The monopoly price of F

Primer: Two Bidders in a SPA

- Given $v_{i} \sim U[0,1]$, what is the revenue from a welfare-maximizing auction (e.g., SPA)? $E[\mathrm{rev}]=E\left[v_{(2)}\right]=\frac{1}{3}$
- Can we do better by setting a reserve price?

Primer: Two Bidders in a SPA

- How to find the optimal reserve price r^{*} ?
- When both $v_{i}<\mathrm{r}$, no sale and the revenue is 0
- When exactly one $v_{i} \geq \mathrm{r}$, the revenue is r
- When both $v_{i}>\mathrm{r}$, sale at second highest bid
- The dominant strategy is still to bid true value

Primer: Two Bidders in a SPA

- How to find the optimal reserve price r^{*} ?
- When both $v_{i}<r$, no sale and the revenue is 0

Get revenue $=0$ with probability r^{2}

- When exactly one $v_{i} \geq \mathrm{r}$, the revenue is r

Get revenue $=r$ with probability $2(1-r) r$

- When both $v_{i}>\mathrm{r}$, sale at second highest bid

Get revenue $=E\left[\min v_{i} \mid v_{i} \geq r\right]$ with probability $(1-r)^{2}$

- The dominant strategy is still to bid true value
$E[\mathrm{rev}]=0 \cdot r^{2}+r \cdot 2(1-r) r+\frac{1+2 r}{3} \cdot(1-r)^{2}$
$r^{*}=\frac{1}{2} \quad$ (the same reserve as one bidder one item)

Primer: Two Bidders in a SPA

- Given $v_{i} \sim U[0,1]$, what is the revenue from a welfare-maximizing auction (e.g., SPA)?
$E[\mathrm{rev}]=E\left[v_{(2)}\right]=\frac{1}{3}$
- Can we do better by setting a reserve price?
$E[\mathrm{rev}]=\frac{1}{4} \cdot 0+\frac{1}{2} \cdot \frac{1}{2}+\frac{1}{4} \cdot \frac{2}{3}=\frac{5}{12}$
- Tradeoffs: higher revenue but also a risk of no sale
- Like adding another bidder to increase competition

Primer: Two Bidders in a SPA

- Given $v_{i} \sim U[0,1]$, what is the revenue from a welfare-maximizing auction (e.g., SPA)?

$$
E[\mathrm{rev}]=E\left[v_{(2)}\right]=\frac{1}{3}
$$

- Can we do better by setting a reserve price?
$E[\mathrm{rev}]=\frac{1}{4} \cdot 0+\frac{1}{2} \cdot \frac{1}{2}+\frac{1}{4} \cdot \frac{2}{3}=\frac{5}{12}$
- Tradeoffs: higher revenue but also a risk of no sale
- Like adding another bidder to increase competition
- Can we do better with a different auction?

Designing Optimal Auctions

If an agent i has valuation $v_{i} \sim F_{i}$, then the virtual valuation function is

$$
\phi_{i}\left(v_{i}\right)=v_{i}-\frac{1-F_{i}\left(v_{i}\right)}{f_{i}\left(v_{i}\right)}
$$

where $F(\cdot)$ and $f(\cdot)$ are the $c d f$ and $p d f$

Designing Optimal Auctions

If an agent i has valuation $v_{i} \sim F_{i}$, then the virtual valuation function is

$$
\phi_{i}\left(v_{i}\right)=v_{i}-\frac{1-F_{i}\left(v_{i}\right)}{f_{i}\left(v_{i}\right)}
$$

where $F(\cdot)$ and $f(\cdot)$ are the $c d f$ aind $p d f$

$$
\begin{array}{|l|}
\hline \begin{array}{l}
\text { Ideally what you'd } \\
\text { charge agent } i
\end{array} \\
\hline
\end{array}
$$

Designing Optimal Auctions

If an agent i has valuation $v_{i} \sim F_{i}$, then the virtual valuation function is

$$
\phi_{i}\left(v_{i}\right)=v_{i}-\frac{1-F_{i}\left(v_{i}\right)}{f_{i}\left(v_{i}\right)}
$$

where $F(\cdot)$ and $f(\cdot)$ are the $c d f$ and $p d f$

1) A mapping from value space to another

- $\phi_{i}\left(v_{i}\right) \leq v_{i}$ and can be negative
- E.g., F is $U[0,1]$, then $\phi_{i}\left(v_{i}\right)=v_{i}-\frac{1-v_{i}}{1}=2 v_{i}-1$

Designing Optimal Auctions

If an agent i has valuation $v_{i} \sim F_{i}$, then the virtual valuation function is

$$
\phi_{i}\left(v_{i}\right)=v_{i}-\frac{1-F_{i}\left(v_{i}\right)}{f_{i}\left(v_{i}\right)}
$$

where $F(\cdot)$ and $f(\cdot)$ are the $c d f$ and $p d f$
2) We focus on $\phi(v)$ that is monotone nondecreasing in v for all v

- Examples of regular distributions: uniform, exponential, lognormal...

Designing Optimal Auctions

If an agent i has valuation $v_{i} \sim F_{i}$, then the virtual valuation function is

$$
\phi_{i}\left(v_{i}\right)=v_{i}-\frac{1-F_{i}\left(v_{i}\right)}{f_{i}\left(v_{i}\right)}
$$

where $F(\cdot)$ and $f(\cdot)$ are the $c d f$ and $p d f$
3) We define the bidder i 's bidder-specific reserve price r_{i}^{*} as the value for which $\phi_{i}\left(r_{i}^{*}\right)=0$

- E.g., F is $\mathrm{U}[0,1]$, then $\phi_{i}\left(v_{i}\right)=2 v_{i}-1$ and $r_{i}^{*}=\frac{1}{2}$

Designing Optimal Auctions

Lemma. In single-dimensional settings, where there are n agents with private values v_{i} drawn independently from known distributions F_{i}.
For every strategy-proof, DRM $M=(x, t)$, for every agent i :

$$
E_{v_{i} \sim F_{i}}\left[t_{i}(v)\right]=E_{v_{i} \sim F_{i}}\left[\phi_{i}\left(v_{i}\right) x_{i}(v)\right]
$$

$$
\begin{array}{|l}
\hline \text { Expected payment for } \\
\text { agent } i \text {, given input } v
\end{array}=\begin{aligned}
& \text { Expected virtual value for } \\
& \text { agent } i \text {, given input } v
\end{aligned}
$$

Designing Optimal Auctions

Lemma. [...] For every strategy-proof, DRM $M=(x, t)$, for every agent i :

$$
E_{v_{i} \sim F_{i}}\left[t_{i}(v)\right]=E_{v_{i} \sim F_{i}}\left[\phi_{i}\left(v_{i}\right) x_{i}(v)\right]
$$

Proof (sketch): utilize the payment identity

Recap: Characterizing BNE in Auctions

Theorem. In any BNE of any sealed-bid auction, for bidder i with v_{i}, we have

- Interim monotonicity: The interim allocation $x_{i}^{*}\left(v_{i}\right)$ is monotone weakly increasing in value v_{i}
- Interim payment identity: For value v_{i} and interim allocation $x_{i}^{*}\left(v_{i}\right)$, the interim payment is

$$
t_{i}^{*}\left(v_{i}\right)=v_{i} \times x_{i}^{*}\left(v_{i}\right)-\int_{z=v_{\min }}^{v_{i}} x_{i}^{*}(z) \mathrm{d} z-C_{i}
$$

where C_{i} is a constant.
Rate of increase in interim payment = Rate of increase in interim value

Designing Optimal Auctions

Lemma. [...] For every strategy-proof, DRM $M=(x, t)$, for every agent i :

$$
E_{v_{i} \sim F_{i}}\left[t_{i}(v)\right]=E_{v_{i} \sim F_{i}}\left[\phi_{i}\left(v_{i}\right) x_{i}(v)\right]
$$

Proof (sketch): utilize the payment identity

$$
\begin{aligned}
\mathbb{E}_{v_{i} \sim F_{i}}\left(t_{i}\left(v_{i}, v_{-i}\right)\right) & =\int_{0}^{v_{\max }} t_{i}\left(z, v_{-i}\right) f_{i}(z) d z \\
& =\int_{0}^{v_{\max }} \int_{0}^{z} \frac{y \cdot x_{i}^{\prime}\left(y, v_{-i}\right) f_{i}(z) d y d z}{} \\
& =\int_{0}^{v_{\max }}\left(\frac{1-F_{i}(y)}{f_{i}(y)}\right) f_{i}(y) x_{i}\left(y, v_{-i}\right) d y \\
& =\mathbb{E}_{v_{i} \sim F_{i}}\left(\phi\left(v_{i}\right) x_{i}(v)\right)
\end{aligned}
$$

Designing Optimal Auctions

Theorem. In single-dimensional settings, for every strategyproof, DRM $M=(x, t)$:

$$
E_{v \sim F}\left[\sum_{i} t_{i}(v)\right]=E_{v \sim F}\left[\sum_{i} \phi_{i}\left(v_{i}\right) x_{i}(v)\right]
$$

| Expected revenue of
 M, given input v |
| :--- |$=$| Expected total virtual value |
| :--- |
| of allocation, given input v |

- Maximizing expected revenue is equivalent to maximizing the virtual welfare!
- We want to find the virtual welfare maximizing $x^{*}(v)$

Designing Optimal Auctions

Intuition:

- If all virtual values are negative, do not allocate
- Otherwise, allocate the item to the bidder with the highest virtual value $\phi_{i}\left(v_{i}\right)$ (possibly not highest value bidder!)
- By how much should we charge the winning bidder?

Myerson's Optimal Auctions

Theorem (Myerson 1981) Suppose there are n bidders with valuations $v_{i} \sim F_{i}$ drawn independently from regular distributions and a single item for sale. The revenue-optimal, incentive compatible auction in terms of a DRM:

- Allocate the item to agent $i=\operatorname{argmax}_{i} \phi_{i}\left(\widehat{v}_{i}\right)$ if $v_{i} \geq r_{i}^{*}$
- If a sale, charge the winning agent i the smallest valuation that it could have declared while remaining the winner, i.e.,

$$
\inf \left\{v_{i}^{*}: \phi_{i}\left(v_{i}^{*}\right) \geq 0 \text { and } \phi_{i}\left(v_{i}^{*}\right) \geq \phi_{j}\left(\widehat{v_{j}}\right), \forall i \neq j\right\}
$$

Myerson's Optimal Auctions

Corollary (Myerson 1981) In a symmetric setting where there are n bidders, the optimal, incentive compatible auction is a SPA with a reserve price of r^{*} that solves $r^{*}-\frac{1-F\left(r^{*}\right)}{f\left(r^{*}\right)}=0$

Myerson's Optimal Auctions

Corollary (Myerson 1981) In a symmetric setting where there are n bidders, the optimal, incentive compatible auction is a SPA with a reserve price of r^{*} that solves $r^{*}-\frac{1-F\left(r^{*}\right)}{f\left(r^{*}\right)}=0$

Let's verify with prior examples

- One bidder one item: $r \cdot(1-F(r))$
$1-F(r)-r f(r)=0 \rightarrow r-\frac{1-F(r)}{f(r)}=0 \rightarrow r=\phi^{-1}(0)$

Analyzing Optimal Auctions

Optimal Auction:
winning agent $i=\operatorname{argmax}_{i} \phi_{i}\left(\widehat{v}_{i}\right)$ if $v_{i} \geq r_{i}^{*}$
Agent i is charged the smallest valuation that it could have declared while remaining the winner, i.e.,

$$
\inf \left\{v_{i}^{*}: \phi_{i}\left(v_{i}^{*}\right) \geq 0 \text { and } \phi_{i}\left(v_{i}^{*}\right) \geq \phi_{j}\left(\widehat{v_{j}}\right), \forall i \neq j\right\}
$$

- Is this VCG? No, it's not efficient.
- How should bidders bid?
- It's a SPA with a reserve price, held in virtual valuation space
- Neither r_{i}^{*} nor $\phi_{i}\left(v_{i}\right)$ depends on the agent report
- Thus, the proof that a SPA is strategy-proof holds

