CS 598: Al Methods for Market Design

Lecture 6: Mechanism Design II

Xintong Wang Spring 2024

Announcements

- One paper presentation today! Three for next week
- Evaluation for paper presentation
- HW1 is out! Please start early

Outline

- Recap: design desiderata
- The VCG mechanism
- Optimal auctions

Outline

- Recap: design desiderata
- The VCG mechanism
- Optimal auctions

Mechanism Desiderata

- Pareto optimality
- Allocative efficiency
- Strategy proofness
- Individual rationality
- No deficit
- Budget balance

equilibrium

equilibrium strategy

Outline

- Recap: design desiderata
- The VCG mechanism
- Optimal auctions

- The Vickrey-Clarke-Groves (VCG) mechanism
- A DRM that achieves many good properties
 - Strategy-proof (incentive compatible)
 - Allocative efficient (welfare maximizing)
 - Individually rational

Given reported valuation profile $\hat{v} = (\hat{v}_1, \dots, \hat{v}_n)$, the VCG mechanism on a set of alternatives A is defined by

• A choice rule

$$x(\hat{v}) = \operatorname{argmax}_{a \in A} \sum_{i \in N} \widehat{v}_i(a)$$

with selected alternative $a^* = x(\hat{v})$

Given reported valuation profile $\hat{v} = (\hat{v}_1, \dots, \hat{v}_n)$, the VCG mechanism on a set of alternatives A is defined by

A choice rule

inc

$$x(\hat{v}) = \operatorname{argmax}_{a \in A} \sum_{i \in N} \widehat{v}_i(a)$$

with selected alternative $a^* = x(\hat{v})$

• A payment rule: charge agent *i*

$$t_{i}(\hat{v}) = \max_{a^{-i} \in A^{-i}} \sum_{j \neq i} \hat{v}_{j}(a^{-i}) - \sum_{j \neq i} \hat{v}_{j}(a^{*})$$
Opportunity cost
incurred by agent *i*

$$= \text{The max total value to} \\ \text{others without agent } i - \text{The total value to others} \\ \text{under } a^{*} \text{ without agent } i$$

 A^{-i} denotes the set of alternatives when agent *i* is not present

Example: VCG mechanism on a single item

- Alternatives: "do not allocation" & "allocate to each agent"
- Three agents with their bids \$10, \$8, \$4 for the item
- The choice rule is $x(\hat{v}) = \operatorname{argmax}_{a \in A} \left(\widehat{v_1}(a) + \widehat{v_2}(a) + \widehat{v_3}(a) \right)$
- The payment rule

Agent 1: $t_1(\hat{v}) = \max$ total value w/o 1 – current total value w/o 1 = 8 - 0 = 8

Agent 2: $t_2(\hat{v}) = \max \text{ total value w/o } 2 - \text{ current total value w/o } 2$ = 10 - 10 = 0

Example: VCG mechanism on a single item **Second-price auction**

- Alternatives: "do not allocation" & "allocate to each agent"
- Three agents with their bids \$10, \$8, \$4 for the item
- The choice rule is $x(\hat{v}) = \operatorname{argmax}_{a \in A} \left(\widehat{v_1}(a) + \widehat{v_2}(a) + \widehat{v_3}(a) \right)$
- The payment rule

Agent 1: $t_1(\hat{v}) = \max$ total value w/o 1 – current total value w/o 1 = 8 - 0 = 8 Pivotal: $a^{-i} \neq a^*$

Agent 2: $t_2(\hat{v}) = \max \text{ total value w/o 2} - \text{ current total value w/o 2}$

= 10 - 10 = 0 Non-pivotal:
$$a^{-i}$$

Example: VCG mechanism, scheduling

	9am	10am	11am
Agent 1	-5	1	2
Agent 2	20	5	10
Agent 3	5	11	2

What would be the selected alternative? What would be the payment for each agent?

Theorem: The VCG mechanism is strategy-proof, allocative efficient, and individually rational.

Theorem: The VCG mechanism is strategy-proof, allocative efficient, and individually rational.

Proof (strategy-proof): Being truthful is dominant strategy.

1) Fix other reports v_{-i} ; a is the selected alternative under (v_i, v_{-i}) $v_i(a) - \left(\max_{a^{-i} \in A^{-i}} \sum_{j \neq i} v_j(a^{-i}) - \sum_{j \neq i} v_j(a)\right) = \sum_i v_i(a) - \max_{a^{-i} \in A^{-i}} \sum_{j \neq i} v_j(a^{-i})$

2) Fix other reports v_{-i} ; a' is the selected alternative under (v_i', v_{-i}) $v_i(a') - \left(\max_{a^{-i} \in A^{-i}} \sum_{j \neq i} v_j(a^{-i}) - \sum_{j \neq i} v_j(a')\right) = \sum_i v_i(a') - \max_{a^{-i} \in A^{-i}} \sum_{j \neq i} v_j(a^{-i})$ $\sum_i v_i(a) - \sum_i v_i(a') = \max_{a \in A} \left(v_i(a) + \sum_{j \neq i} v_j(a)\right) - \left(v_i(a') + \sum_{j \neq i} v_j(a')\right) \ge 0$ 14

Theorem: The VCG mechanism is strategy-proof, allocative efficient, and individually rational.

Proof (allocative efficiency): This is by construction: $x(\hat{v}) = \operatorname{argmax}_{a \in A} \sum_{i} v_i(a)$

Theorem: The VCG mechanism is strategy-proof, allocative efficient, and individually rational.

Proof (individual rationality): Agent i's utility of truthfulness $v_{i}(a) - \left(\max_{a^{-i} \in A^{-i}} \sum_{j \neq i} v_{j}(a^{-i}) - \sum_{j \neq i} v_{j}(a)\right)$ $= \sum_{i} v_{i}(a) - \max_{a^{-i} \in A^{-i}} \sum_{j \neq i} v_{j}(a^{-i})$ $\geq \sum_{i} v_{i}(a) - \max_{a^{-i} \in A^{-i}} \sum_{i} v_{i}(a^{-i})$ ≥ 0

Recap with some more comments:

- Choose a welfare maximizing outcome
- Charge each agent *i* the welfare had agent *i* not participate *minus* the welfare of everyone else given agent *i* participates
- Charge each agent the "harm" it does on the welfare of everyone else (i.e., *externality*)

Example: Two items, three bidders

- A wants one apple and is willing to pay \$5
- B wants one apple and is willing to pay \$2
- C wants two apples and is willing to pay \$6 for both but is uninterested in buying one without the other

Example: Two items, three bidders

- A wants one apple and is willing to pay \$5
- B wants one apple and is willing to pay \$2
- C wants two apples and is willing to pay \$6 for both but is uninterested in buying one without the other

Outcome:

A and B get the two apples

A pays \$4 = \$6 (max value w/o A) - \$2 (current value w/o A)

B pays \$1 = \$6 (max value w/o B) - \$5 (current value w/o B)

Example: Two items, three bidders

- A wants one apple and is willing to pay \$5
- B wants one apple and is willing to pay \$2
- C wants two apples and is willing to pay \$6 for both but is uninterested in buying one without the other

What is the computational complexity of finding the welfaremaximizing outcome?

Example: Two items, three bidders

- A wants one apple and is willing to pay \$5
- B wants one apple and is willing to pay \$2
- C wants two apples and is willing to pay \$6 for both but is uninterested in buying one without the other

What is the computational complexity of finding the welfaremaximizing outcome? A knapsack problem!

maximize
$$\sum_{i=1}^n v_i x_i$$

subject to $\sum_{i=1}^n w_i x_i \leq W$ and $x_i \in \{0,1\}$

Example: Two items, three bidders

- A wants one apple and is willing to pay \$5
- B wants one apple and is willing to pay \$2
- C wants two apples and is willing to pay \$6 for both but is uninterested in buying one without the other

What is the computational complexity of finding the welfaremaximizing outcome? A knapsack problem!

$$\begin{array}{ll} \text{maximize} \sum_{i=1}^{n} v_{i} x_{i} & n = 3 \text{ bidders} \\ v_{1} = 5, v_{2} = 2, v_{3} = 6 \\ w_{1} = 1 \ w_{2} = 1, w_{3} = 2 \\ \text{subject to} \sum_{i=1}^{n} w_{i} x_{i} \leq W \text{ and } x_{i} \in \{0,1\} & W = 2 \end{array}$$

- Compute the welfare-maximizing outcome is NP-hard
- Communication cost of each agent's valuation function
 - Allocate *m* items to *n* participants
 - Each agent's valuation function consists 2^m numbers
 - Communication requirement is then $n2^m$

Outline

- Recap: design desiderata
- The VCG mechanism
- Optimal auctions

Optimal Auctions

- Efficient auctions so far
- What about maximizing the seller's expected revenue?
 - May be willing to risk failing to sell the item

Optimal Auctions: Setting

Auctions in an independent private value settings

- Risk-neutral bidders with private valuations
- Each agent's valuation v_i is independently drawn from a strictly increasing cdf $F_i(\cdot)$ with a continuous pdf $f_i(\cdot)$
 - Allow $F_i \neq F_j$: asymmetric auctions
- The risk-neutral seller knows each F_i and has no value for the object

Optimal Auctions: Definition

The auction that maximizes the expected revenue *subject to* individual rationality and Bayesian incentive compatibility for the buyers is an **optimal auction**

- A posted-price mechanism: The seller announces a price r, and the buyer can either pay the price and take the item or pay nothing and get nothing
- Given a private valuation v, how should we set a *welfare-maximizing* posted price r?

- A posted-price mechanism: The seller announces a price r, and the buyer can either pay the price and take the item or pay nothing and get nothing
- Given a private valuation v, how should we set a *welfare-maximizing* posted price r? r = 0

- A posted-price mechanism: The seller announces a price r, and the buyer can either pay the price and take the item or pay nothing and get nothing
- Given a private valuation v, how should we set a *welfare-maximizing* posted price r? r = 0
- Given a private valuation v, how should we set a *revenue-maximizing* posted price r?

• Given a private valuation v, how should we set a *revenue-maximizing* posted price r?

We assume $v \sim F$, where the distribution is known but the realization v is private

The expected revenue: $r \cdot (1 - F(r))$ Revenue of a sale Prob of a sale = $\Pr(v \ge r)$ When $v \sim U[0, 1], F(x) = x, r = \frac{1}{2}$ and $E[rev] = \frac{1}{4}$ The monopoly price of F

- Given $v_i \sim U[0, 1]$, what is the revenue from a welfare-maximizing auction (e.g., SPA)? $E[\text{rev}] = E[v_{(2)}] = \frac{1}{3}$
- Can we do better by setting a reserve price?

- How to find the optimal reserve price r^* ?
 - When both $v_i < r$, no sale and the revenue is 0
 - When exactly one $v_i \ge r$, the revenue is r
 - When both $v_i > r$, sale at second highest bid
- The dominant strategy is still to bid true value

- How to find the optimal reserve price r^* ?
 - When both $v_i < r$, no sale and the revenue is 0 Get revenue = 0 with probability r^2
 - When exactly one $v_i \ge r$, the revenue is r

Get revenue = r with probability 2(1 - r)r

- When both $v_i > r$, sale at second highest bid Get revenue = $E[\min v_i | v_i \ge r]$ with probability $(1 - r)^2$
- The dominant strategy is still to bid true value

$$E[rev] = 0 \cdot r^2 + r \cdot 2(1-r)r + \frac{1+2r}{3} \cdot (1-r)^2$$

 $r^* = \frac{1}{2}$ (the same reserve as one bidder one item)

- Given $v_i \sim U[0, 1]$, what is the revenue from a welfare-maximizing auction (e.g., SPA)? $E[\text{rev}] = E[v_{(2)}] = \frac{1}{3}$
- Can we do better by setting a reserve price? $F[rev] = \frac{1}{2} \cdot 0 + \frac{1}{2} \cdot \frac{1}{2} + \frac{1}{2} \cdot \frac{2}{2} = \frac{5}{2}$

$$E[rev] = \frac{1}{4} \cdot 0 + \frac{1}{2} \cdot \frac{1}{2} + \frac{1}{4} \cdot \frac{1}{3} = \frac{1}{12}$$

- Tradeoffs: higher revenue but also a risk of no sale
- Like adding another bidder to increase competition

Primer: Two Bidders in a SPA

- Given $v_i \sim U[0, 1]$, what is the revenue from a welfare-maximizing auction (e.g., SPA)? $E[\text{rev}] = E[v_{(2)}] = \frac{1}{3}$
- Can we do better by setting a reserve price?

$$E[\text{rev}] = \frac{1}{4} \cdot 0 + \frac{1}{2} \cdot \frac{1}{2} + \frac{1}{4} \cdot \frac{2}{3} = \frac{5}{12}$$

- Tradeoffs: higher revenue but also a risk of no sale
- Like adding another bidder to increase competition
- Can we do better with a different auction?

If an agent *i* has valuation $v_i \sim F_i$, then the *virtual* valuation function is

$$\phi_i(v_i) = v_i - \frac{1 - F_i(v_i)}{f_i(v_i)}$$

where $F(\cdot)$ and $f(\cdot)$ are the cdf and pdf

If an agent *i* has valuation $v_i \sim F_i$, then the *virtual valuation function* is

 $\phi_i(v_i) = v_i - \frac{1 - F_i(v_i)}{f_i(v_i)}$ where $F(\cdot)$ and $f(\cdot)$ are the cdf and pdf

Ideally what you'd charge agent *i*

"information rent": revenue loss caused by not knowing v_i $Pr(v \ge v_i) / Pr(v = v_i)$

If an agent *i* has valuation $v_i \sim F_i$, then the *virtual* valuation function is

$$\phi_i(v_i) = v_i - \frac{1 - F_i(v_i)}{f_i(v_i)}$$

where $F(\cdot)$ and $f(\cdot)$ are the cdf and pdf

1) A mapping from value space to another

• $\phi_i(v_i) \leq v_i$ and can be negative

• E.g., F is U[0, 1], then
$$\phi_i(v_i) = v_i - \frac{1 - v_i}{1} = 2v_i - 1$$

If an agent *i* has valuation $v_i \sim F_i$, then the *virtual* valuation function is

$$\phi_i(v_i) = v_i - \frac{1 - F_i(v_i)}{f_i(v_i)}$$

where $F(\cdot)$ and $f(\cdot)$ are the cdf and pdf

2) We focus on $\phi(v)$ that is monotone nondecreasing in v for all v

• Examples of regular distributions: uniform, exponential, lognormal...

If an agent *i* has valuation $v_i \sim F_i$, then the *virtual* valuation function is

$$\phi_i(v_i) = v_i - \frac{1 - F_i(v_i)}{f_i(v_i)}$$

where $F(\cdot)$ and $f(\cdot)$ are the cdf and pdf

3) We define the bidder *i*'s bidder-specific reserve price r_i^* as the value for which $\phi_i(r_i^*) = 0$

• E.g., F is U[0, 1], then
$$\phi_i(v_i) = 2v_i - 1$$
 and $r_i^* = \frac{1}{2}$

Lemma. In *single-dimensional* settings, where there are n agents with private values v_i drawn independently from known distributions F_i .

For every strategy-proof, DRM M = (x, t), for every agent *i*:

$$E_{v_i \sim F_i}[t_i(v)] = E_{v_i \sim F_i}[\phi_i(v_i)x_i(v)]$$

Expected payment for
agent i, given input v=Expected virtual value for
agent i, given input v

Lemma. [...] For every strategy-proof, DRM M = (x, t), for every agent *i*:

$$E_{v_i \sim F_i}[t_i(v)] = E_{v_i \sim F_i}[\phi_i(v_i)x_i(v)]$$

Proof (sketch): utilize the payment identity

Recap: Characterizing BNE in Auctions

Theorem. In any BNE of any sealed-bid auction, for bidder i with v_i , we have

- Interim monotonicity: The interim allocation $x_i^*(v_i)$ is monotone weakly increasing in value v_i
- Interim payment identity: For value v_i and interim allocation $x_i^*(v_i)$, the interim payment is

$$t_i^*(v_i) = v_i \times x_i^*(v_i) - \int_{z=v_{\min}}^{v_i} x_i^*(z) dz - C_i$$

where C_i is a constant.

Rate of increase in interim payment = Rate of increase in interim value

Lemma. [...] For every strategy-proof, DRM M = (x, t), for every agent *i*:

$$E_{v_i \sim F_i}[t_i(v)] = E_{v_i \sim F_i}[\phi_i(v_i)x_i(v)]$$

Proof (sketch): utilize the payment identity

$$\begin{split} \mathbb{E}_{v_i \sim F_i}(t_i(v_i, v_{-i})) &= \int_0^{v_{\max}} t_i(z, v_{-i}) f_i(z) dz \\ &= \int_0^{v_{\max}} \int_0^z \underline{y \cdot x_i'(y, v_{-i})} f_i(z) dy dz \\ &= \int_0^{v_{\max}} \left(\frac{1 - F_i(y)}{f_i(y)}\right) f_i(y) x_i(y, v_{-i}) dy \\ &= \mathbb{E}_{v_i \sim F_i}(\phi(v_i) x_i(v)). \end{split}$$

Theorem. In *single-dimensional* settings, for every strategyproof, DRM M = (x, t):

$$E_{v \sim F}\left[\sum_{i} t_{i}(v)\right] = E_{v \sim F}\left[\sum_{i} \phi_{i}(v_{i})x_{i}(v)\right]$$

Expected revenue of
M, given input v = Expected total virtual value
of allocation, given input v

- Maximizing expected revenue is equivalent to maximizing the virtual welfare!
- We want to find the virtual welfare maximizing $x^*(v)$

Intuition:

- If all virtual values are negative, do not allocate
- Otherwise, allocate the item to the bidder with the highest virtual value $\phi_i(v_i)$ (possibly not highest value bidder!)
- By how much should we charge the winning bidder?

Myerson's Optimal Auctions

Theorem (Myerson 1981) Suppose there are n bidders with valuations $v_i \sim F_i$ drawn independently from regular distributions and a single item for sale. The revenue-optimal, incentive compatible auction in terms of a DRM:

- Allocate the item to agent $i = \operatorname{argmax}_i \phi_i(\widehat{v}_i)$ if $v_i \ge r_i^*$
- If a sale, charge the winning agent *i* the smallest valuation that it could have declared while remaining the winner, i.e.,

 $\inf\{v_i^*: \phi_i(v_i^*) \ge 0 \text{ and } \phi_i(v_i^*) \ge \phi_j(\widehat{v}_j), \forall i \neq j\}$

Myerson's Optimal Auctions

Corollary (Myerson 1981) In a symmetric setting where there are *n* bidders, the optimal, incentive compatible auction is a SPA with a reserve price of r^* that solves $r^* - \frac{1-F(r^*)}{f(r^*)} = 0$

Myerson's Optimal Auctions

Corollary (Myerson 1981) In a symmetric setting where there are *n* bidders, the optimal, incentive compatible auction is a SPA with a reserve price of r^* that solves $r^* - \frac{1-F(r^*)}{f(r^*)} = 0$

Let's verify with prior examples

• One bidder one item: $r \cdot (1 - F(r))$

$$1 - F(r) - rf(r) = 0 \rightarrow r - \frac{1 - F(r)}{f(r)} = 0 \rightarrow r = \phi^{-1}(0)$$

Analyzing Optimal Auctions

Optimal Auction:

winning agent $i = \operatorname{argmax}_i \phi_i(\widehat{v}_i)$ if $v_i \ge r_i^*$

Agent *i* is charged the smallest valuation that it could have declared while remaining the winner, i.e.,

$$\inf\{v_i^*: \phi_i(v_i^*) \ge 0 \text{ and } \phi_i(v_i^*) \ge \phi_j(\widehat{v}_j), \forall i \neq j\}$$

- Is this VCG? No, it's not efficient.
- How should bidders bid?
 - It's a SPA with a reserve price, held in virtual valuation space
 - Neither r_i^* nor $\phi_i(v_i)$ depends on the agent report
 - Thus, the proof that a SPA is strategy-proof holds