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Announcements

• One paper presentation today! Three for next week

• Evaluation for paper presentation

• HW1 is out! Please start early
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Outline

• Recap: design desiderata

• The VCG mechanism

• Optimal auctions
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Mechanism Desiderata

• Pareto optimality

• Allocative efficiency

• Strategy proofness 

• Individual rationality

• No deficit

• Budget balance
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equilibrium

equilibrium strategy



Outline

• Recap: design desiderata

• The VCG mechanism

• Optimal auctions
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VCG Mechanism

• The Vickrey-Clarke-Groves (VCG) mechanism

• A DRM that achieves many good properties
• Strategy-proof (incentive compatible) 
• Allocative efficient (welfare maximizing)
• Individually rational
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VCG Mechanism

Given reported valuation profile !𝑣 = (%𝑣!, … , %𝑣"), the VCG 
mechanism on a set of alternatives 𝐴	is defined by
• A choice rule 

𝑥 !𝑣 = argmax#∈%∑&∈' 2𝑣& 𝑎  
   with selected alternative a∗ = 𝑥 !𝑣
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VCG Mechanism

Given reported valuation profile !𝑣 = (%𝑣!, … , %𝑣"), the VCG 
mechanism on a set of alternatives 𝐴	is defined by
• A choice rule 

𝑥 !𝑣 = argmax#∈%∑&∈' 2𝑣& 𝑎  
   with selected alternative a∗ = 𝑥 !𝑣
• A payment rule: charge agent 𝑖

 𝑡& !𝑣 = max
)!"	∈%!"

	∑*+,	 2𝑣* 𝑎.& − ∑*+,	 2𝑣* 𝑎∗

   

𝐴.& denotes the set of alternatives when agent 𝑖 is not present
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The max total value to 
others without agent 𝑖

The total value to others 
under a* without agent 𝑖

Opportunity cost
incurred by agent 𝑖 = −



VCG Mechanism
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Example: VCG mechanism on a single item
• Alternatives: “do not allocation” & “allocate to each agent”

• Three agents with their bids $10, $8, $4 for the item

• The choice rule is	𝑥 !𝑣 = argmax#∈% %𝑣! 𝑎 + %𝑣/ 𝑎 + %𝑣0 𝑎
• The payment rule
   Agent 1:  𝑡! "𝑣  = max total value w/o 1 – current total value w/o 1

                      = 8 - 0 = 8
   Agent 2:  𝑡" "𝑣  = max total value w/o 2 – current total value w/o 2

                      = 10 - 10 = 0



VCG Mechanism
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Example: VCG mechanism on a single item
• Alternatives: “do not allocation” & “allocate to each agent”

• Three agents with their bids $10, $8, $4 for the item

• The choice rule is	𝑥 !𝑣 = argmax#∈% %𝑣! 𝑎 + %𝑣/ 𝑎 + %𝑣0 𝑎
• The payment rule
   Agent 1:  𝑡! "𝑣  = max total value w/o 1 – current total value w/o 1

                      = 8 - 0 = 8
   Agent 2:  𝑡" "𝑣  = max total value w/o 2 – current total value w/o 2

                      = 10 - 10 = 0

Pivotal: 𝑎#$ ≠ 𝑎∗

Non-pivotal: 𝑎#$ = 𝑎∗

Second-price auction



VCG Mechanism

Example: VCG mechanism, scheduling

What would be the selected alternative?
What would be the payment for each agent?
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9am 10am 11am
Agent 1 -5 1 2
Agent 2 20 5 10
Agent 3 5 11 2



VCG Mechanism

Theorem: The VCG mechanism is strategy-proof, 
allocative efficient, and individually rational.
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VCG Mechanism

Theorem: The VCG mechanism is strategy-proof, 
allocative efficient, and individually rational.

Proof (strategy-proof): Being truthful is dominant strategy. 
1) Fix other reports 𝑣#$; 𝑎 is the selected alternative under (𝑣$ , 𝑣#$)
𝑣$ 𝑎 − max

%!"∈'!#
'
()$

𝑣* 𝑎+$ −'
*)$

𝑣* 𝑎 ='
$

𝑣$ 𝑎 − max
%!"∈'!#

'
()$

𝑣* 𝑎+$

2) Fix other reports 𝑣#$; 𝑎′ is the selected alternative under (𝑣$′, 𝑣#$)
𝑣$ 𝑎′ − max

%!"∈'!#
'
()$

𝑣* 𝑎+$ −'
*)$

𝑣* 𝑎′ ='
$

𝑣$ 𝑎′ − max
%!"∈'!#

'
()$

𝑣* 𝑎+$

1
!

𝑣! 𝑎 −1
!

𝑣! 𝑎" = max
#∈%

𝑣! 𝑎 +1
&'(

𝑣& 𝑎 − 𝑣! 𝑎" +1
&'(

𝑣& 𝑎" ≥ 0
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VCG Mechanism

Theorem: The VCG mechanism is strategy-proof, 
allocative efficient, and individually rational.

Proof (allocative efficiency):
This is by construction: 𝑥 !𝑣 = argmax#∈%∑& 𝑣&(𝑎)
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VCG Mechanism

Theorem: The VCG mechanism is strategy-proof, 
allocative efficient, and individually rational.

Proof (individual rationality): Agent i’s utility of truthfulness
𝑣$ 𝑎 − max

&)*∈()+
0
)*$

𝑣+ 𝑎#$ −0
+*$

𝑣+ 𝑎

= ∑$ 𝑣$ 𝑎 −	 max
&)*∈()+

∑)*$ 𝑣+ 𝑎#$

≥ ∑$ 𝑣$ 𝑎 −	 max
&)*∈()+

∑$ 𝑣$ 𝑎#$

≥ 0 
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VCG Mechanism

Recap with some more comments:

• Choose a welfare maximizing outcome

• Charge each agent 𝑖	the welfare had agent 𝑖 not 
participate minus the welfare of everyone else 
given agent 𝑖 participates

• Charge each agent the “harm” it does on the 
welfare of everyone else (i.e., externality)
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Computational Aspects of VCG
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Computational Aspects of VCG

Example: Two items, three bidders
• A wants one apple and is willing to pay $5
• B wants one apple and is willing to pay $2
• C wants two apples and is willing to pay $6 for both but is 

uninterested in buying one without the other
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Computational Aspects of VCG

Example: Two items, three bidders
• A wants one apple and is willing to pay $5
• B wants one apple and is willing to pay $2
• C wants two apples and is willing to pay $6 for both but is 

uninterested in buying one without the other

Outcome: 
A and B get the two apples
A pays $4 = $6 (max value w/o A) - $2 (current value w/o A)
B pays $1 = $6 (max value w/o B) - $5 (current value w/o B)
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Computational Aspects of VCG

Example: Two items, three bidders
• A wants one apple and is willing to pay $5
• B wants one apple and is willing to pay $2
• C wants two apples and is willing to pay $6 for both but is 

uninterested in buying one without the other

What is the computational complexity of finding the welfare-
maximizing outcome?
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Computational Aspects of VCG

Example: Two items, three bidders
• A wants one apple and is willing to pay $5
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maximizing outcome? A knapsack problem!

22



Computational Aspects of VCG

Example: Two items, three bidders
• A wants one apple and is willing to pay $5
• B wants one apple and is willing to pay $2
• C wants two apples and is willing to pay $6 for both but is 

uninterested in buying one without the other

What is the computational complexity of finding the welfare-
maximizing outcome? A knapsack problem!
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𝑛	 = 	3	bidders
𝑣! = 5, 𝑣/ = 2, 𝑣0 = 6
𝑤! = 1	𝑤/ = 1,𝑤0 = 2
𝑊 = 2



Computational Aspects of VCG

• Compute the welfare-maximizing outcome is NP-hard

• Communication cost of each agent’s valuation function
• Allocate 𝑚 items to 𝑛 participants
• Each agent’s valuation function consists 2< numbers
• Communication requirement is then 𝑛2< 
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Outline

• Recap: design desiderata

• The VCG mechanism

• Optimal auctions
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Optimal Auctions

• Efficient auctions so far
• What about maximizing the seller’s expected revenue?
• May be willing to risk failing to sell the item

26



Optimal Auctions: Setting

Auctions in an independent private value settings
• Risk-neutral bidders with private valuations
• Each agent’s valuation 𝑣"  is independently drawn 

from a strictly increasing cdf	𝐹"(⋅) with a continuous 
pdf 𝑓"(⋅) 
• Allow 𝐹& ≠ 𝐹*: asymmetric auctions

• The risk-neutral seller knows each 𝐹"  and has no 
value for the object
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Optimal Auctions: Definition

The auction that maximizes the expected revenue 
subject to individual rationality and Bayesian incentive 
compatibility for the buyers is an optimal auction
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Primer: One Bidder and One Item

• A posted-price mechanism: The seller announces a 
price 𝑟, and the buyer can either pay the price and 
take the item or pay nothing and get nothing

• Given a private valuation 𝑣, how should we set a 
welfare-maximizing posted price 𝑟? 

• Given a private valuation 𝑣, how should we set a 
revenue-maximizing posted price 𝑟? 
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Primer: One Bidder and One Item

• A posted-price mechanism: The seller announces a 
price 𝑟, and the buyer can either pay the price and 
take the item or pay nothing and get nothing

• Given a private valuation 𝑣, how should we set a 
welfare-maximizing posted price 𝑟? 𝑟 = 0

• Given a private valuation 𝑣, how should we set a 
revenue-maximizing posted price 𝑟? 
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Primer: One Bidder and One Item

• A posted-price mechanism: The seller announces a 
price 𝑟, and the buyer can either pay the price and 
take the item or pay nothing and get nothing

• Given a private valuation 𝑣, how should we set a 
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Primer: One Bidder and One Item

• Given a private valuation 𝑣, how should we set a 
revenue-maximizing posted price 𝑟? 

•  We assume 𝑣 ∼ 𝐹, where the distribution is known 
but the realization 𝑣 is private

•  The expected revenue: 𝑟 ⋅ (1 − 𝐹(𝑟))

•  When v ∼ 𝑈[0, 1], 𝐹 𝑥 = 𝑥. r = #
$
 and E[rev]= #

%
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Revenue of a sale Prob of a sale = Pr(𝑣 ≥ 𝑟)

The monopoly price of 𝐹



Primer: Two Bidders in a SPA

• Given 𝑣" ∼ 𝑈[0, 1], what is the revenue from a 
welfare-maximizing auction (e.g., SPA)?

   𝐸[rev] = 𝐸 𝑣 $ = #
*

• Can we do better by setting a reserve price?

33



Primer: Two Bidders in a SPA

• How to find the optimal reserve price 𝑟∗?
• When both 𝑣& < r, no sale and the revenue is 0 

• When exactly one 𝑣& ≥ r, the revenue is 𝑟

• When both 𝑣& > r, sale at second highest bid

• The dominant strategy is still to bid true value
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Primer: Two Bidders in a SPA

• How to find the optimal reserve price 𝑟∗?
• When both 𝑣& < 𝑟, no sale and the revenue is 0 
Get revenue = 0 with probability 𝑟/
• When exactly one 𝑣& ≥ r, the revenue is 𝑟
Get revenue = 𝑟 with probability 2(1 − 𝑟)𝑟	
• When both 𝑣& > r, sale at second highest bid
Get revenue = 𝐸[min 𝑣&	|	𝑣& ≥ 𝑟] with probability 1 − 𝑟 /

• The dominant strategy is still to bid true value

	 𝐸 rev = 0 ⋅ 𝑟/ + 𝑟 ⋅ 2 1 − 𝑟 𝑟 +
1 + 2𝑟
3

⋅ 1 − 𝑟 /

 𝑟∗= !
/	 (the same reserve as one bidder one item)
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Primer: Two Bidders in a SPA

• Given 𝑣" ∼ 𝑈[0, 1], what is the revenue from a 
welfare-maximizing auction (e.g., SPA)?

   𝐸[rev] = 𝐸 𝑣 $ = #
*

• Can we do better by setting a reserve price?

   𝐸 rev = #
%
⋅ 0 + #

$
⋅ #
$
+ #

%
⋅ $
*
= ,

#$

• Tradeoffs: higher revenue but also a risk of no sale
• Like adding another bidder to increase competition
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Primer: Two Bidders in a SPA

• Given 𝑣" ∼ 𝑈[0, 1], what is the revenue from a 
welfare-maximizing auction (e.g., SPA)?

   𝐸[rev] = 𝐸 𝑣 $ = #
*

• Can we do better by setting a reserve price?

   𝐸 rev = #
%
⋅ 0 + #

$
⋅ #
$
+ #

%
⋅ $
*
= ,

#$

• Tradeoffs: higher revenue but also a risk of no sale
• Like adding another bidder to increase competition

• Can we do better with a different auction?
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Designing Optimal Auctions

If an agent 𝑖 has valuation 𝑣" ∼ 𝐹", then the virtual 
valuation function is

𝜙"(𝑣") = 𝑣" −
1 − 𝐹"(𝑣")
𝑓"(𝑣")

where 𝐹(⋅) and 𝑓(⋅) are the cdf and pdf
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Ideally what you’d 
charge agent 𝑖

“information rent”: revenue 
loss caused by not knowing 𝑣!
Pr(𝑣 ≥ 𝑣!) / Pr(𝑣 = 𝑣!) 

Designing Optimal Auctions

If an agent 𝑖 has valuation 𝑣" ∼ 𝐹", then the virtual 
valuation function is

𝜙"(𝑣") = 𝑣" −
1 − 𝐹"(𝑣")
𝑓"(𝑣")

where 𝐹(⋅) and 𝑓(⋅) are the cdf and pdf
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Designing Optimal Auctions

If an agent 𝑖 has valuation 𝑣" ∼ 𝐹", then the virtual 
valuation function is

𝜙"(𝑣") = 𝑣" −
1 − 𝐹"(𝑣")
𝑓"(𝑣")

where 𝐹(⋅) and 𝑓(⋅) are the cdf and pdf

1) A mapping from value space to another
• 𝜙&(𝑣&) ≤ 𝑣& and can be negative
• E.g., 𝐹 is U[0, 1], then 𝜙&(𝑣&) = 𝑣& −

!.="
!
= 2𝑣& − 1
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Designing Optimal Auctions

If an agent 𝑖 has valuation 𝑣" ∼ 𝐹", then the virtual 
valuation function is

𝜙"(𝑣") = 𝑣" −
1 − 𝐹"(𝑣")
𝑓"(𝑣")

where 𝐹(⋅) and 𝑓(⋅) are the cdf and pdf

2) We focus on 𝜙(𝑣) that is monotone nondecreasing 
in 𝑣 for all 𝑣
• Examples of regular distributions: uniform, exponential, 

lognormal…  



42

Designing Optimal Auctions

If an agent 𝑖 has valuation 𝑣" ∼ 𝐹", then the virtual 
valuation function is

𝜙"(𝑣") = 𝑣" −
1 − 𝐹"(𝑣")
𝑓"(𝑣")

where 𝐹(⋅) and 𝑓(⋅) are the cdf and pdf

3) We define the bidder 𝑖’s bidder-specific reserve 
price 𝑟"∗as the value for which 𝜙"(𝑟"∗) = 0
• E.g., 𝐹 is U[0, 1], then 𝜙&(𝑣&) = 2𝑣& − 1 and 𝑟&∗ =

!
/



Designing Optimal Auctions

Lemma. In single-dimensional settings, where there are 𝑛 
agents with private values 𝑣& drawn independently from 
known distributions 𝐹&. 
For every strategy-proof, DRM 𝑀 = (𝑥, 𝑡), for every agent 𝑖: 

𝐸="∼?" 𝑡& 𝑣 = 	𝐸="∼?" 𝜙& 𝑣& 𝑥&(𝑣)
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Expected payment for 
agent 𝑖, given input 𝑣

Expected virtual value for 
agent 𝑖, given input 𝑣=



Lemma. […] For every strategy-proof, DRM 𝑀 = (𝑥, 𝑡), for 
every agent 𝑖: 

𝐸="∼?" 𝑡& 𝑣 = 	𝐸="∼?" 𝜙& 𝑣& 𝑥&(𝑣)

Proof (sketch): utilize the payment identity

44

Designing Optimal Auctions



Recap: Characterizing BNE in Auctions

Theorem. In any BNE of any sealed-bid auction, for 
bidder 𝑖 with 𝑣", we have
• Interim monotonicity: The interim allocation 𝑥"∗(𝑣") 

is monotone weakly increasing in value 𝑣"
• Interim payment identity: For value 𝑣" 	and interim 

allocation 𝑥"∗(𝑣"), the interim payment is

   where 𝐶"  is a constant.
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Rate of increase in interim payment = Rate of increase in interim value



Lemma. […] For every strategy-proof, DRM 𝑀 = (𝑥, 𝑡), for 
every agent 𝑖: 

𝐸="∼?" 𝑡& 𝑣 = 	𝐸="∼?" 𝜙& 𝑣& 𝑥&(𝑣)

Proof (sketch): utilize the payment identity
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Designing Optimal Auctions



Theorem. In single-dimensional settings, for every strategy-
proof, DRM 𝑀 = (𝑥, 𝑡): 

𝐸=∼? T
&

	 𝑡& 𝑣 = 	𝐸=∼? T
&

	 𝜙& 𝑣& 𝑥&(𝑣)

• Maximizing expected revenue is equivalent to maximizing 
the virtual welfare!
• We want to find the virtual welfare maximizing 𝑥∗(𝑣)

47

Expected revenue of 
M, given input 𝑣

Expected total virtual value 
of allocation, given input 𝑣=

Designing Optimal Auctions



Intuition:
• If all virtual values are negative, do not allocate
• Otherwise, allocate the item to the bidder with the highest 

virtual value 𝜙&(𝑣&)	(possibly not highest value bidder!) 
• By how much should we charge the winning bidder?

48

Designing Optimal Auctions



Myerson’s Optimal Auctions

Theorem (Myerson 1981) Suppose there are 𝑛 bidders with 
valuations 𝑣& 	∼ 	𝐹&	drawn independently from regular 
distributions and a single item for sale. The revenue-optimal, 
incentive compatible auction in terms of a DRM:  
• Allocate the item to agent 𝑖 = argmax&𝜙&(2𝑣&) if 𝑣& ≥ 𝑟&∗

• If a sale, charge the winning agent 𝑖 the smallest valuation 
that it could have declared while remaining the winner, i.e., 

    inf{𝑣&∗: 	𝜙& 𝑣&∗ ≥ 0 and 𝜙& 𝑣&∗ ≥ 𝜙* 2𝑣* , ∀𝑖 ≠ 𝑗} 
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Myerson’s Optimal Auctions

Corollary (Myerson 1981) In a symmetric setting where there 
are 𝑛 bidders, the optimal, incentive compatible auction is a 
SPA with a reserve price of 𝑟	∗ that solves 𝑟	∗ −

!.? @∗

A @∗ = 0
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Myerson’s Optimal Auctions

Corollary (Myerson 1981) In a symmetric setting where there 
are 𝑛 bidders, the optimal, incentive compatible auction is a 
SPA with a reserve price of 𝑟	∗ that solves 𝑟	∗ −

!.? @∗

A @∗ = 0

Let’s verify with prior examples

• One bidder one item: 𝑟 ⋅ 1 − 𝐹 𝑟

1 − 𝐹 𝑟 − 𝑟𝑓 𝑟 = 0  à  𝑟 − !.? @
A @

= 0  à 𝑟 = 𝜙.!(0)
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Analyzing Optimal Auctions
Optimal Auction:
winning agent 𝑖 = argmax$𝜙$(9𝑣$) if 𝑣$ ≥ 𝑟$∗

Agent 𝑖	is charged the smallest valuation that it could have declared 
while remaining the winner, i.e., 

    inf{𝑣$∗: 	𝜙$ 𝑣$∗ ≥ 0 and 𝜙$ 𝑣$∗ ≥ 𝜙+ 9𝑣+ , ∀𝑖 ≠ 𝑗} 

• Is this VCG?  No, it’s not efficient.
• How should bidders bid?

• It’s a SPA with a reserve price, held in virtual valuation space
• Neither 𝑟$∗ nor 𝜙$ 𝑣$	 depends on the agent report
• Thus, the proof that a SPA is strategy-proof holds
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