CS 598: Al Methods for Market Design

Lecture 5: Mechanism Design

Xintong Wang Spring 2024

Announcements

- Two paper presentations today! One for next week
- HW1 will be out next week
 - You can work in pairs or individually
- Please NO ChatGPT (Gen AI) for CQs and homework
- You can drop two pre-class CQs, no more exceptions unless late enrollment
- Office hour today: after class to 2pm

Outline

- Recap: revenue equivalence
- Multi-round auctions
- Direct-revelation mechanism
- Revelation principle
- Design desiderata
- The VCG mechanism

Outline

- Recap: revenue equivalence
- Multi-round auctions
- Direct-revelation mechanism
- Revelation principle
- Design desiderata
- The VCG mechanism

Characterizing BNE in Auctions

Given an auction and an equilibrium strategy s^* , at an intermediate state where bidder i knows v_i

- Interim allocation for bidder i with v_i The probability the item is allocate to bidder i in eq.
- Interim payment for bidder i with v_i The expected payment made by bidder i in eq.
- Interim utility

Characterizing BNE in Auctions

Given an auction and an equilibrium strategy s^* , at an intermediate state where bidder i knows v_i

• Interim allocation for bidder i with v_i

$$x_i^*(v_i) = \mathbf{E}_{v_{-i}}[x_i(s_i^*(v_i), s_{-i}^*(v_{-i}))]$$

• Interim payment for bidder i with v_i

$$t_i^*(v_i) = \mathbf{E}_{v_{-i}}[t_i(s_i^*(v_i), s_{-i}^*(v_{-i}))]$$

• Interim utility then is $u_i^*(v_i) = v_i x_i^*(v_i) - t_i^*(v_i)$

Characterizing BNE in Auctions

Theorem. In any BNE of any sealed-bid auction, for bidder i with v_i , we have

- Interim monotonicity: The interim allocation $x_i^*(v_i)$ is monotone weakly increasing in value v_i
- Interim payment identity: For value v_i and interim allocation $x_i^*(v_i)$, the interim payment is

$$t_i^*(v_i) = v_i \times x_i^*(v_i) - \int_{z=v_{\min}}^{v_i} x_i^*(z) dz - C_i$$

where C_i is a constant.

Rate of increase in interim payment = Rate of increase in interim value

Revenue Equivalence

A *normalized auction* is one where a bidder with value 0 (or v_{min}) has zero interim utility

Theorem. Any two normalized, sealed-bid auctions that each have a BNE with an identical interim allocation have the same expected revenue in these two BNE.

Proof:

same interim allocation → same interim payment

→ same revenue

$$Rev = \sum_{i=1}^{n} \mathbf{E}_{v_i}[t_i^*(v_i)]$$

Finding a BNE in an Auction: Guess & Verify

• Guess that some auction design, A, with values i.i.d. sampled from distribution G has an efficient BNE and is normalized (i.e., $s_i(v_i) = 0$ for $v_i = 0$)

 Construct a strategy profile s, such that the interim payment in auction A at s is equal to the interim payment at truthful DSE of a SPSB auction

 Verify that s is a BNE in auction A. Confirm that auction A is efficient with s and normalized Finding a BNE in an Auction: Guess & Verify

Question:

Follow guess & verify to derive the BNE for (1) the all-pay auction and (2) the FPSB auction

Outline

- Recap: revenue equivalence
- Multi-round auctions
- Direct-revelation mechanism
- Revelation principle
- Design desiderata
- The VCG mechanism

Multi-Round Auctions

- May allow bidders to respond to others' bids, esp. in interdependent or common value scenarios
- May have more flexible strategies
- Can be helpful in transparency and credibility

Outline

- Recap: revenue equivalence
- Multi-round auctions
- Direct-revelation mechanism
- Revelation principle
- Design desiderata
- The VCG mechanism

Economic Environment

- A set of $N = \{1, ..., n\}$ agents
- A set of A alternatives
 - The time of a meeting, the assignment of ads to slots

Economic Environment

- A set of $N = \{1, ..., n\}$ agents
- A set of A alternatives
 - The time of a meeting, the assignment of ads to slots
- Settings without money
 - Each agent has a preference ordering: $a \succeq_i b$ for $a, b \in A$
 - Preference profile: $\succeq = (\succeq_1, \cdots, \succeq_n)$

Economic Environment

- A set of $N = \{1, ..., n\}$ agents
- A set of A alternatives
 - The time of a meeting, the assignment of ads to slots
- Settings without money
 - Each agent has a preference ordering: $a \succeq_i b$ for $a, b \in A$
 - Preference profile: $\succeq = (\succeq_1, \cdots, \succeq_n)$
- Settings with money / payment
 - Each agent has a valuation function: $v_i:A\to\mathbb{R}$
 - Valuation profile: $v = (v_1, ..., v_n)$
 - Each agent has a quasi-linear utility function: $u_i(a, p_i) = v_i(a) p_i$, for alternative a and payment $p_i \in \mathbb{R}$

A direct-revelation mechanism (DRM) involves
 a single round of communication where each agent
 makes a simultaneous report of their preferences /
 valuation functions

The mechanism outcome (without money)

$$\widehat{\succeq} = (\widehat{\succeq}_1, \cdots, \widehat{\succeq}_n)$$

An outcome rule $g: P^n \to A$

Reported preference profile

- The mechanism outcome (without money)
- Example: meeting scheduling
 - Alternatives: 9am, 10am, 11am
 - Three agents with their preference orderings
 - $11am >_1 10am >_1 9am$
 - 9am \succ_2 11am \succ_2 10am
 - $10am >_3 9am >_3 11am$
 - Plurality rule, tie breaking in favor of earlier time
 - Under truthful report, g(>) = 9am
 - What would be a beneficial deviation for agent 1?

The mechanism outcome (with money)

$$\widehat{v} = (\widehat{v_1}, \dots, \widehat{v_n})$$

Reported valuation profile

A choice rule $x: V \to A$ A payment rule $t: V \to \mathbb{R}^n$

- The mechanism outcome (with money)
- Example: single-item auction
 - Alternatives: "do not allocation" & "allocate to each agent"
 - Three agents with their valuation functions
 - Agent 1, 2, 3 have values \$10, \$8, \$4 for the item

$$v_1(a) = \begin{cases} 10 & \text{if } a \in A \text{ assigns the item to agent 1} \\ 0 & \text{otherwise} \end{cases}$$

- Under SPSB auction
 - The choice rule is $x(\hat{v}) = \operatorname{argmax}_{a \in A} (\widehat{v_1}(a) + \widehat{v_2}(a) + \widehat{v_3}(a))$
 - The payment rule is, for $x(\hat{v}) = i$,
 - $t_i(\hat{v}) = \max_{a \in A} \sum_{j \neq i} \widehat{v_j}(a)$ and $t_j(\hat{v}) = 0$ for $j \neq i$

Algorithm Design vs. Mechanism Design

Algorithm

- Fixed input
- Design won't change input
- E.g., route planning

Mechanism

- Strategic input
- Design may affect input and then outcome
- E.g., FPSB, SPSB

- A game of incomplete information
- Dominant-strategy equilibrium: a robust prediction of agent behavior and mechanism outcome

DSE (no money)

A strategy profile $s^* = (s_1^*, ..., s_n^*)$ is a dominant-strategy equilibrium in a DRM M = (g) if and only if, for every agent i

$$g(s^*(\succeq_i), s_{-i}(\succeq_{-i})) \succeq_i g(\widehat{\succeq}_i, s_{-i}(\succeq_{-i})),$$

 $for \ all \succeq_i, \ all \widehat{\succeq}_i, \ all \succeq_{-i}, \ all \ s_{-i}$

No misreport will strictly improve agent utility.

DSE (with money)

A strategy profile $s^* = (s_1^*, ..., s_n^*)$ is a dominant-strategy equilibrium in a DRM M = (x, t) if and only if, for every agent i

$$v_{i}(x(s_{i}^{*}(v_{i}), s_{-i}(v_{-i}))) - t_{i}(s_{i}^{*}(v_{i}), s_{-i}(v_{-i}))$$

$$\geq v_{i}(x(\hat{v}_{i}, s_{-i}(v_{-i}))) - t_{i}(\hat{v}_{i}, s_{-i}(v_{-i}))$$

$$for all v_{i}, all \hat{v}_{i}, all v_{-i}, all s_{-i}$$

No misreport will strictly improve agent utility.

Strategy-proof mechanism

A DRM is strategy-proof when truthful reporting is a DSE

Terminology

Strategy-proof

Dominant-strategy incentive compatible (DSIC)

Truthful

- Example: a variant of meeting scheduling
 - Alternatives: 9am, 10am
 - Three agents with their preference orderings
 - Plurality rule, tie breaking in favor of earlier time
 - What is the dominant strategy? Is the mechanism strategyproof?

- Example: a variant of meeting scheduling
 - Alternatives: 9am, 10am
 - Three agents with their preference orderings
 - Plurality rule, tie breaking in favor of earlier time
 - An agent's report only matters when the others differ
 - Truthful reporting is a dominant strategy

Implementation by a Mechanism

• Social choice function $f(\succeq) \in A \ / f(v) \in A$ Map true preferences of agents into an alternative

Implementation by a Mechanism

- A DRM implements a social choice function (SCF) f
 in dominant strategy, where s* is the DSE and f is
 defined as the following:
 - 1) For a mechanism M=(g) without money, $f(\succeq_1,\cdots,\succeq_n)=g(s_1^*(\succeq_1),\cdots,s_n^*(\succeq_n))$
 - 2) For a mechanism M=(x,t) with money, $f(v_1,\cdots,v_n)=x(s_1^*(v_1),\cdots,s_n^*(v_n))$

Implementation by a Mechanism

 A DRM directly implements the outcome rule g or the choice rule x when the mechanism is strategyproof (at the truthful DSE) Direct-revelation mechanisms so far...

How about more complex, indirect mechanisms?

Indirect Mechanisms

- The English auction
- "Priority order": the mechanism asks each agent in turn on which item they want from what is left
- Multiple rounds of negotiations and lots of computation

•

What is the search space of a desirable mechanism?

Outline

- Recap: revenue equivalence
- Multi-round auctions
- Direct-revelation mechanism
- Revelation principle
- Design desiderata
- The VCG mechanism

Revelation Principle [Myerson 81]

The Revelation Principle

For every mechanism where there is a dominant strategy for all players, there is an equivalent, strategy-proof direct-revelation mechanism

The Revelation Principle

For every mechanism where there is a dominant strategy for all players, there is an equivalent, strategy-proof direct-revelation mechanism

Proof: (DSE, without money)

Given some mechanism M with a DSE s^* , how can we transform it into a strategy-proof DRM M?

Proof: (DSE, without money)

Given some mechanism M with a DSE s^* , how can we transform it into a strategy-proof DRM M'?

(1) On any reported profile $\widehat{\succeq} = (\widehat{\succeq}_1, \cdots, \widehat{\succeq}_n)$, let M' run M on input $s^*(\widehat{\succeq}) = (s^*(\widehat{\succeq}_1), \cdots, s^*(\widehat{\succeq}_n))$

Therefore, if reporting $s_i^*(\succeq_i)$ is a dominant strategy in M, then reporting \succeq_i is a dominant strategy in M'

Proof: (DSE, without money)

Given some mechanism M with a DSE s^* , how can we transform it into a strategy-proof DRM M'?

(2) Let M' output the outcome rule that M outputs

That is
$$g'(\widehat{\succeq})) = g(s^*(\widehat{\succeq}))$$

In other words, we have M' simulate M, implementing the same SCF

Example (DSE, with money):

Consider the ascending-clock auction for a single item.

Dominant strategy: stay until price reaches value.

Construct a DRM that simulates the ascending-clock auction, together with the dominant strategy

→ Strategy-proof SPSB auction

Some more comments:

- Can be extended to BNE
- A powerful theoretical construct: anything that can be achieved in the eq. of mechanism M can be achieved in the truthful eq. of a strategy-proof DRM M'!
- Vice versa: if there is no strategy-proof DRM that implements some SCF f, then it is impossible to implement f in the eq. of an indirect design

Outline

- Recap: revenue equivalence
- Multi-round auctions
- Direct-revelation mechanism
- Revelation principle
- Design desiderata
- The VCG mechanism

Mechanism Desiderata

- Pareto optimality
- Allocative efficiency
- Strategy proofness
- Individual rationality
- No deficit
- Budget balance

Mechanism Desiderata

- Pareto optimality
- Allocative efficiency
- Strategy proofness
- Individual rationality
- No deficit
- Budget balance

equilibrium

equilibrium strategy

Outline

- Recap: revenue equivalence
- Multi-round auctions
- Direct-revelation mechanism
- Revelation principle
- Design desiderata
- The VCG mechanism

- The Vickrey-Clarke-Groves (VCG) mechanism
- A DRM that achieves many good properties
 - Strategy-proof (incentive compatible)
 - Allocative efficient (welfare maximizing)
 - Individually rational

Given reported valuation profile $\hat{v} = (\widehat{v_1}, ..., \widehat{v_n})$, the VCG mechanism on a set of alternatives A is defined by

A choice rule

$$x(\hat{v}) = \operatorname{argmax}_{a \in A} \sum_{i \in N} \widehat{v}_i(a)$$

with selected alternative $a^* = x(\hat{v})$

Given reported valuation profile $\hat{v} = (\widehat{v_1}, ..., \widehat{v_n})$, the VCG mechanism on a set of alternatives A is defined by

A choice rule

$$x(\hat{v}) = \operatorname{argmax}_{a \in A} \sum_{i \in N} \hat{v}_i(a)$$

with selected alternative $a^* = x(\hat{v})$

A payment rule: charge agent i

$$t_i(\widehat{v}) = \max_{a^{-i} \in A^{-i}} \sum_{j \neq i} \widehat{v}_j(a^{-i}) - \sum_{j \neq i} \widehat{v}_j(a^*)$$

Opportunity cost incurred by agent $i = \begin{bmatrix} \text{The max total value to} \\ \text{others without agent } i \end{bmatrix}$

The total value to others under a^* without agent i

 A^{-i} denotes the set of alternatives when agent i is not present

Example: VCG mechanism on a single item | Second-price auction

- Alternatives: "do not allocation" & "allocate to each agent"
- Three agents with their bids \$10, \$8, \$4 for the item
- The choice rule is $x(\hat{v}) = \operatorname{argmax}_{a \in A} (\widehat{v_1}(a) + \widehat{v_2}(a) + \widehat{v_3}(a))$
- The payment rule

Agent 1:
$$t_1(\hat{v}) = \max \text{ total value w/o } 1 - \text{current total value w/o } 1$$

= 8 - 0 = 8 Pivotal: $a^{-i} \neq a^*$

Agent 2:
$$t_2(\hat{v})$$
 = max total value w/o 2 – current total value w/o 2 = $10 - 10 = 0$ Non-pivotal: $a^{-i} = a^*$

Example: VCG mechanism on a single item

- Alternatives: "do not allocation" & "allocate to each agent"
- Three agents with their bids \$10, \$8, \$4 for the item
- The choice rule is $x(\hat{v}) = \operatorname{argmax}_{a \in A} (\widehat{v_1}(a) + \widehat{v_2}(a) + \widehat{v_3}(a))$
- The payment rule

Agent 1:
$$t_1(\hat{v})$$
 = max total value w/o 1 – current total value w/o 1 = 8 - 0 = 8

Agent 2:
$$t_2(\hat{v})$$
 = max total value w/o 2 – current total value w/o 2 = $10 - 10 = 0$

Example: VCG mechanism on a single item | Second-price auction

- Alternatives: "do not allocation" & "allocate to each agent"
- Three agents with their bids \$10, \$8, \$4 for the item
- The choice rule is $x(\hat{v}) = \operatorname{argmax}_{a \in A} (\widehat{v_1}(a) + \widehat{v_2}(a) + \widehat{v_3}(a))$
- The payment rule

Agent 1:
$$t_1(\hat{v}) = \max \text{ total value w/o } 1 - \text{current total value w/o } 1$$

= 8 - 0 = 8 Pivotal: $a^{-i} \neq a^*$

Agent 2:
$$t_2(\hat{v})$$
 = max total value w/o 2 – current total value w/o 2 = $10 - 10 = 0$ Non-pivotal: $a^{-i} = a^*$

Example: VCG mechanism, scheduling

	9am	10am	11 am
Agent 1	-5	1	2
Agent 2	20	5	10
Agent 3	5	11	2

What would be the selected alternative? What would be the payment for each agent?

Theorem: The VCG mechanism is strategy-proof, allocative efficient, and individually rational.

Theorem: The VCG mechanism is strategy-proof, allocative efficient, and individually rational.

Proof (strategy-proof): Being truthful is dominant strategy.

1) Fix other reports v_{-i} ; a is the selected alternative under (v_i, v_{-i})

$$v_i(a) - \left(\max_{\mathbf{a}^{-i} \in A^{-i}} \sum_{\mathbf{j} \neq i} v_j(a^{-i}) - \sum_{\mathbf{j} \neq i} v_j(a)\right) = \sum_i v_i(a) - \max_{\mathbf{a}^{-i} \in A^{-i}} \sum_{\mathbf{j} \neq i} v_j(a^{-i})$$

2) Fix other reports v_{-i} ; a' is the selected alternative under (v_i', v_{-i})

$$v_i(a') - \left(\max_{\mathbf{a}^{-i} \in A^{-i}} \sum_{\mathbf{j} \neq i} v_j(a^{-i}) - \sum_{\mathbf{j} \neq i} v_j(a')\right) = \sum_i v_i(a') - \max_{\mathbf{a}^{-i} \in A^{-i}} \sum_{\mathbf{j} \neq i} v_j(a^{-i})$$

$$\sum_{i} v_{i}(a) - \sum_{i} v_{i}(a') = \max_{a \in A} \left(v_{i}(a) + \sum_{j \neq i} v_{j}(a) \right) - \left(v_{i}(a') + \sum_{j \neq i} v_{j}(a') \right) \ge 0$$

Theorem: The VCG mechanism is strategy-proof, allocative efficient, and individually rational.

Proof (allocative efficiency):

This is by construction: $x(\hat{v}) = \operatorname{argmax}_{a \in A} \sum_{i} v_i(a)$

Theorem: The VCG mechanism is strategy-proof, allocative efficient, and individually rational.

Proof (individual rationality): Agent i's utility of truthfulness

$$v_{i}(a) - \left(\max_{a^{-i} \in A^{-i}} \sum_{j \neq i} v_{j}(a^{-i}) - \sum_{j \neq i} v_{j}(a)\right)$$

$$= \sum_{i} v_{i}(a) - \max_{a^{-i} \in A^{-i}} \sum_{j \neq i} v_{j}(a^{-i})$$

$$\geq \sum_{i} v_{i}(a) - \max_{a^{-i} \in A^{-i}} \sum_{i} v_{i}(a^{-i})$$

$$\geq 0$$

Recap with some more comments:

- Choose a welfare maximizing outcome
- Charge each agent i the welfare had agent i not participate minus the welfare of everyone else given agent i participates
- Charge each agent the "harm" it does on the welfare of everyone else (i.e., externality)

Example: Two items, three bidders

- A wants one apple and is willing to pay \$5
- B wants one apple and is willing to pay \$2
- C wants two apples and is willing to pay \$6 for both but is uninterested in buying one without the other

Example: Two items, three bidders

- A wants one apple and is willing to pay \$5
- B wants one apple and is willing to pay \$2
- C wants two apples and is willing to pay \$6 for both but is uninterested in buying one without the other

Outcome:

A and B get the two apples

A pays \$4 = \$6 (max value w/o A) - \$2 (current value w/o A)

B pays \$1 = \$6 (max value w/o B) - \$5 (current value w/o B)

Example: Two items, three bidders

- A wants one apple and is willing to pay \$5
- B wants one apple and is willing to pay \$2
- C wants two apples and is willing to pay \$6 for both but is uninterested in buying one without the other

What is the computational complexity of finding the welfaremaximizing outcome?

Example: Two items, three bidders

- A wants one apple and is willing to pay \$5
- B wants one apple and is willing to pay \$2
- C wants two apples and is willing to pay \$6 for both but is uninterested in buying one without the other

What is the computational complexity of finding the welfaremaximizing outcome? A knapsack problem!

maximize
$$\sum_{i=1}^n v_i x_i$$
 subject to $\sum_{i=1}^n w_i x_i \leq W$ and $x_i \in \{0,1\}$

Example: Two items, three bidders

- A wants one apple and is willing to pay \$5
- B wants one apple and is willing to pay \$2
- C wants two apples and is willing to pay \$6 for both but is uninterested in buying one without the other

What is the computational complexity of finding the welfaremaximizing outcome? A knapsack problem!

maximize
$$\sum_{i=1}^n v_i x_i$$
 $n=3$ bidders $v_1=5, v_2=2, v_3=6$ subject to $\sum_{i=1}^n w_i x_i \leq W$ and $x_i \in \{0,1\}$ $w_1=1$ $w_2=1, w_3=2$ $w_1=1$

- Compute the welfare-maximizing outcome is NP-hard
- Communication cost of each agent's valuation function
 - Allocate m items to n participants
 - Each agent's valuation function consists 2^m numbers
 - Communication requirement is then $n2^m$
- What if the goal is revenue-maximizing?