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Announcements

* Two paper presentations today! One for next week

* HW1 will be out next week
* You can work in pairs or individually

* Please NO ChatGPT (Gen Al) for CQs and homework

* You can drop two pre-class CQs, no more exceptions
unless late enrollment

 Office hour today: after class to 2pm



Outline

* Recap: revenue equivalence
 Multi-round auctions

* Direct-revelation mechanism
* Revelation principle

* Design desiderata

e The VCG mechanism
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Characterizing BNE in Auctions

Given an auction and an equilibrium strategy s, at
an intermediate state where bidder i knows v;

* Interim allocation for bidder i with v;
The probability the item is allocate to bidder i in eq.

* Interim payment for bidder i with v;
The expected payment made by bidder i in eq.

* Interim utility



Characterizing BNE in Auctions

Given an auction and an equilibrium strategy s, at
an intermediate state where bidder i knows v;

* Interim allocation for bidder i with v;
zi(vi) = By_, [zi(s] (v3), s25(v-4))]
* Interim payment for bidder i with v;
t; (vi) = By_, [ti(s] (v:), 8%5(v-4))]

e Interim utility then is w} (v;) = vz} (v;) — t(v;)



Characterizing BNE in Auctions

Theorem. In any BNE of any sealed-bid auction, for
bidder i with v;, we have

* Interim monotonicity: The interim allocation x; (v;)
iIs monotone weakly increasing in value v;

* Interim payment identity: For value v; and interim
allocation x; (v;), the interim payment is

(%

£ (03) = v; X 2 (v5) — / v (2)dz — G,

Z=Umin

where C; is a constant.

Rate of increase in interim payment = Rate of increase in interim value
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Revenue Equivalence

A normalized auction is one where a bidder with value O (or
Vmin) has zero interim utility

Theorem. Any two normalized, sealed-bid auctions that each
have a BNE with an identical interim allocation have the same
expected revenue in these two BNE.

Proof:

same interim allocation = same interim payment

- same revenue

Rev = Z E,, [t; (vi)]

1=1



Finding a BNE in an Auction: Guess & Verify

* Guess that some auction design, A, with values i.i.d.
sampled from distribution ¢ has an efficient BNE and is

normalized (i.e., s;(v;) = 0 for v; = 0)

* Construct a strategy profile s, such that the interim payment
in auction A at s is equal to the interim payment at truthful
DSE of a SPSB auction

* Verify that s is a BNE in auction 4. Confirm that auction A4is
efficient with sand normalized



Finding a BNE in an Auction: Guess & Verify

Question:

Follow guess & verify to derive the BNE for (1) the
all-pay auction and (2) the FPSB auction
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* Multi-round auctions

* Direct-revelation mechanism
* Revelation principle

* Design desiderata

e The VCG mechanism



Multi-Round Auctions

* May allow bidders to respond to others’ bids, esp.
in interdependent or common value scenarios

* May have more flexible strategies

e Can be helpful in transparency and credibility



Multi-Round
Auctions

N

Clock

SPSB

Ascending Descending
Enelish Clock 2nd-Price
5 (Dutch) Clock
FPSB SPSB
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* Recap: revenue equivalence
 Multi-round auctions

* Direct-revelation mechanism
* Revelation principle

* Design desiderata

e The VCG mechanism
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Economic Environment

 Asetof N ={1,...,n} agents

* Aset of A alternatives
* The time of a meeting, the assignment of ads to slots
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Economic Environment

 Asetof N ={1,...,n} agents

* Aset of A alternatives
* The time of a meeting, the assignment of ads to slots

e Settings without money
e Each agent has a preference ordering: a =, b fora,b € A
* Preference profile: == (>, -+, >=,)

y
* Settings with money / payment
* Each agent has a valuation function: v;: 4 - R
* Valuation profile: v = (vq, ..., V)
* Each agent has a quasi-linear utility function:
u;(a,p;) = v;(a) — p;, for alternative a and payment p; € R
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Direct-Revelation Mechanisms

* A direct-revelation mechanism (DRM) involves
a single round of communication where each agent
makes a simultaneous report of their preferences /
valuation functions

18



Direct-Revelation Mechanisms

* The mechanism outcome (without money)

@ —
&—

M = (g)

N

J

g:(g,... ;\)

y —Nn

1Y)

)e A

— g(

An outcome rule g: P"* — A

Reported preference profile
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Direct-Revelation Mechanisms

* The mechanism outcome (without money)

* Example: meeting scheduling
e Alternatives: 9am, 10am, 11am
* Three agents with their preference orderings
e 11am >4 10am >4, 9am
* 9am >, 11lam >, 10am
* 10am >3 9am >3 1lam
* Plurality rule, tie breaking in favor of earlier time
 Under truthful report, g(>) = 9am
 What would be a beneficial deviation for agent 17



Direct-Revelation Mechanisms

* The mechanism outcome (with money)

8—>f )
O&— | M=@1
6— y

U=, ..,0n) A choicerulex:V - A4
A paymentrulet:V - R"

—— x(D) €A

— t(V) € R"

Reported valuation profile
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Direct-Revelation Mechanisms

* The mechanism outcome (with money)

* Example: single-item auction
e Alternatives: “do not allocation” & “allocate to each agent”

* Three agents with their valuation functions
* Agent 1, 2, 3 have values $10, $8, $4 for the item

v (a) = 10 if a € A assigns the item to agent 1
! 0 otherwise

* Under SPSB auction
* The choice rule is x(¥) = argmaxaeA(TJ}(a) + v5(a) + TJE(a))
* The payment rule is, for x(¥) = |,
* t;(¥) = max 2;,; Uj(a) and t;(D) = O forj # i
aceA



Algorithm Design vs. Mechanism Design

Algorithm Mechanism

* Fixed input  Strategic input

* Design won’t change * Design may affect input
input and then outcome

e E.g., route planning * E.g., FPSB, SPSB



Mechanism Desigh as a Game

* A game of incomplete information

 Dominant-strategy equilibrium: a robust prediction
of agent behavior and mechanism outcome



Mechanism Desigh as a Game

* DSE (no money)

A strategy profile s* = (s7, ..., S;,) is a dominant-
strategy equilibrium ina DRM M = (g) if and only if,

for every agent i

AN

g(8™(=4),8-i(==i)) =i 9(=4, 5-i(==4)),
for all >=;, all Ei, all =_;, all s_;

No misreport will strictly improve agent utility.



Mechanism Desigh as a Game

* DSE (with money)

A strategy profile s* = (s7, ..., S;,) is a dominant-
strategy equilibriumina DRM M = (x, t) if and only
if, for every agent i

vi(2(8; (vi), $-i(v—3))) — ti(s7 (vi), s—i(v—s))
> vi(2(0;, 5—i(v—i))) — i (i, s—i(v—s))
for all v;, all v;, all v_;, all s_;

No misreport will strictly improve agent utility.



Mechanism Desigh as a Game

* Strategy-proof mechanism

A DRM is strategy-proof when truthful reporting is a
DSE

* Terminology

Strategy-proof

Dominant-strategy incentive compatible (DSIC)
Truthful



Mechanism Desigh as a Game

* Example: a variant of meeting scheduling
e Alternatives: 9am, 10am
* Three agents with their preference orderings
* Plurality rule, tie breaking in favor of earlier time

 What is the dominant strategy? Is the mechanism strategy-
proof?

28



Mechanism Desigh as a Game

* Example: a variant of meeting scheduling
e Alternatives: 9am, 10am
* Three agents with their preference orderings
* Plurality rule, tie breaking in favor of earlier time
* An agent’s report only matters when the others differ
* Truthful reporting is a dominant strategy



Implementation by a Mechanism

* Social choice function f(=)e€ A/ f(v) e A
Map true preferences of agents into an alternative



Implementation by a Mechanism

* ADRM implements a social choice function (SCF) f
in dominant strategy, where s™ is the DSE and f is
defined as the following:

1) For a mechanism M = (g) without money,
f(ila B in) — g(ST(il)v T 7S;(in))

2) For a mechanism M = (x, t) with money,

flor, -y on) = 2(s1(v1), -+, 85 (vn))



Implementation by a Mechanism

* A DRM directly implements the outcome rule g or
the choice rule x when the mechanism is strategy-
proof (at the truthful DSE)



Direct-revelation mechanisms so far...

How about more complex, indirect
mechanisms?




Indirect Mechanisms

* The English auction

e “Priority order”: the mechanism asks each agent in
turn on which item they want from what is left

* Multiple rounds of negotiations and lots of
computation

What is the search space of a desirable mechanism?

34
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Revelation Principle [Myerson 81]

* The Revelation Principle

For every mechanism where there is a dominant
strategy for all players, there is an equivalent,
strategy-proof direct-revelation mechanism




Revelation Principle [Myerson 81]

* The Revelation Principle

For every mechanism where there is a dominant
strategy for all players, there is an equivalent,
strategy-proof direct-revelation mechanism

Proof: (DSE, without money)

Given some mechanism M with a DSE s*, how can
we transform it into a strategy-proof DRM M’?



Revelation Principle [Myerson 81]

Proof: (DSE, without money)

Given some mechanism M with a DSE s*, how can

we transform it into a strategy-proof DRM M'?

(1) On any reported prgfileg = (/517 a 78)/,\|et M’
run M on input s*(>=) = (s*(=1), - ,s"(=n))

Therefore, if reporting s} (=;) is a dominant strategy
in M, then reporting ~;is a dominant strategy in M’



Revelation Principle [Myerson 81]

Proof: (DSE, without money)

Given some mechanism M with a DSE s*, how can
we transform it into a strategy-proof DRM M'?

(2) Let M’ output the outcome rule that M outputs
Thatis ¢'(=)) = g(s*(=))



Revelation Principle [Myerson 81]

In other words, we have M’ simulate M, implementing
the same SCF

/\/\-_-(m >j(g-3=

40



Revelation Principle [Myerson 81]

Example (DSE, with money):
Consider the ascending-clock auction for a single item.
Dominant strategy: stay until price reaches value.

Construct a DRM that simulates the ascending-clock
auction, together with the dominant strategy

—> Strategy-proof SPSB auction



Revelation Principle [Myerson 81]

Some more comments:
e Can be extended to BNE

* A powerful theoretical construct: anything that can be
achieved in the eqg. of mechanism M can be achieved in the
truthful eq. of a strategy-proof DRM M’!

* Vice versa: if there is no strategy-proof DRM that implements
some SCF f, then it is impossible to implement f in the eq. of
an indirect design
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Mechanism Desiderata

* Pareto optimality

* Allocative efficiency
* Strategy proofness

* Individual rationality
* No deficit

e Budget balance



Mechanism Desiderata

* Pareto optimality

* Allocative efficiency ~ — equilibrium

 Strategy proofness _
* Individual rationality equilibrium strategy
* No deficit

e Budget balance



Outline

* Recap: revenue equivalence
 Multi-round auctions

* Direct-revelation mechanism
* Revelation principle

* Design desiderata

e The VCG mechanism



VCG Mechanism

* The Vickrey-Clarke-Groves (VCG) mechanism

A DRM that achieves many good properties
* Strategy-proof (incentive compatible)
* Allocative efficient (welfare maximizing)
* Individually rational



VCG Mechanism

Given reported valuation profile ¥ = (v4, ..., 7,,), the VCG
mechanism on a set of alternatives A is defined by

A choice rule

x (V) = argmaxgeq Dy Ui(@)

with selected alternative a* = x (D)



VCG Mechanism

Given reported valuation profile ¥ = (v4, ..., 7,,), the VCG
mechanism on a set of alternatives A is defined by

* A choice rule
x (V) = argmaxgeq Dy Ui(@)
with selected alternative a* = x (D)

* A payment rule: charge agent i

t;(V) = max Zj;ti @(a_i) — Zjii vj(a”)

a—teAd !
Opportunity cost | _ | The max total value to | | The total value to others
incurred by agent i others without agent i under a* without agent i

A~ denotes the set of alternatives when agent i is not present
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VCG Mechanism

Example: VCG mechanism on a single item | Second-price auction

e Alternatives: “do not allocation” & “allocate to each agent”

* Three agents with their bids $10, $8, $4 for the item

* The choice rule is x(¥) = argmaxaeA(TJ}(a) + v5(a) + @(a))
* The payment rule

Agent 1: t;(¥) = max total value w/o 1 — current total value w/o 1

=8-0=8 Pivotal: a~! # a*
Agent 2: t,(¥) = max total value w/o 2 — current total value w/o 2
= 10 - 10 = O . —i %
Non-pivotal: a™" = a

50



VCG Mechanism

Example: VCG mechanism on a single item

e Alternatives: “do not allocation” & “allocate to each agent”

* Three agents with their bids $10, $8, $4 for the item

* The choice rule is x(¥) = argmaxaeA(TJ}(a) + v5(a) + 1/75(61))
* The payment rule

Agent 1: t;(¥) = max total value w/o 1 — current total value w/o 1
=8-0=8

Agent 2: t,(¥) = max total value w/o 2 — current total value w/o 2
=10-10=0



VCG Mechanism

Example: VCG mechanism on a single item | Second-price auction

e Alternatives: “do not allocation” & “allocate to each agent”

* Three agents with their bids $10, $8, $4 for the item

* The choice rule is x(¥) = argmaxaeA(TJ}(a) + v5(a) + @(a))
* The payment rule

Agent 1: t;(¥) = max total value w/o 1 — current total value w/o 1

=8-0=8 Pivotal: a~! # a*
Agent 2: t,(¥) = max total value w/o 2 — current total value w/o 2
= 10 - 10 = O . —i %
Non-pivotal: a™" = a
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VCG Mechanism

Example: VCG mechanism, scheduling

B N N T

Agent 1 -
Agent 2 20 5 10
Agent 3 5 11 2

What would be the selected alternative?

What would be the payment for each agent?

53



VCG Mechanism

Theorem: The VCG mechanism is strategy-proof,
allocative efficient, and individually rational.



VCG Mechanism

Theorem: The VCG mechanism is strategy-proof,
allocative efficient, and individually rational.

Proof (strategy-proof): Being truthful is dominant strategy.

1) Fix other reports v_;; a is the selected alternative under (v;, v_;)

@ = ( mag, ) ule) =), @) = ) u@ = max ) (o)

j#i J#L i J#L

2) Fix other reports v_;; a’ is the selected alternative under (v;’, v_;)

ORI EEHWICHEPWICHEPWICEEEHWICY

JES JE) i J#L

Z v;(a) — Z vi(a') = max <vi(a) + Z vj(a)> — (vl- (a") + Z vj(a’)> >0

Jj#i Jj#i



VCG Mechanism

Theorem: The VCG mechanism is strategy-proof,
allocative efficient, and individually rational.

Proof (allocative efficiency):

This is by construction: x(¥) = argmaxge4 2; vi(a)



VCG Mechanism

Theorem: The VCG mechanism is strategy-proof,
allocative efficient, and individually rational.

Proof (individual rationality): Agent i’s utility of truthfulness

vi(a) — (apileax_i 2 vj (a—i) _ z vj(a)>

j#i J#I
= )..V; — N
=2 vi(a) alrileax_iz]il Vj (a )
> v;(a) — max ,Zivi(a‘l)
a~led™t

=0



VCG Mechanism

Recap with some more comments:

* Choose a welfare maximizing outcome

* Charge each agent i the welfare had agent i not
participate minus the welfare of everyone else

given agent { participates

* Charge each agent the “harm” it does on the
welfare of everyone else (i.e., externality)



Computational Aspects of VCG



Computational Aspects of VCG

Example: Two items, three bidders
* A wants one apple and is willing to pay S5
* B wants one apple and is willing to pay $2

* C wants two apples and is willing to pay $6 for both but is
uninterested in buying one without the other



Computational Aspects of VCG

Example: Two items, three bidders
* A wants one apple and is willing to pay S5
* B wants one apple and is willing to pay $2

* C wants two apples and is willing to pay $6 for both but is
uninterested in buying one without the other

Outcome:
A and B get the two apples
A pays $4 = S6 (max value w/o A) - $2 (current value w/o A)

B pays S1 = $6 (max value w/o B) - S5 (current value w/o B)



Computational Aspects of VCG

Example: Two items, three bidders
* A wants one apple and is willing to pay S5
* B wants one apple and is willing to pay $2

* C wants two apples and is willing to pay $6 for both but is
uninterested in buying one without the other

What is the computational complexity of finding the welfare-
maximizing outcome?
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Computational Aspects of VCG

Example: Two items, three bidders
* A wants one apple and is willing to pay S5
* B wants one apple and is willing to pay $2

* C wants two apples and is willing to pay $6 for both but is
uninterested in buying one without the other

What is the computational complexity of finding the welfare-

maximizing outcome? A knapsack problem!

n
maximize Z (JE
i=1
T
subjectto » w;z; < Wandz; € {0,1}
i=1
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Computational Aspects of VCG

Example: Two items, three bidders
* A wants one apple and is willing to pay S5
* B wants one apple and is willing to pay $2

* C wants two apples and is willing to pay $6 for both but is
uninterested in buying one without the other

What is the computational complexity of finding the welfare-
maximizing outcome? A knapsack problem!
n
maximize Z (JE
i=1

= 3 bidders
1=5U2=2 V3=6
W1—1W2—1W3—2
subjecttoZ'wzxz <Wandz; € {0,1} W =2
1=1
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Computational Aspects of VCG

* Compute the welfare-maximizing outcome is NP-hard

 Communication cost of each agent’s valuation function
* Allocate m items to n participants
* Each agent’s valuation function consists 2™ numbers
 Communication requirement is then n2™

* What if the goal is revenue-maximizing?



