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Announcements

• Paper presentation assignment is out
• Paper reading and presenting guidelines
• Peer evaluation and grading scheme

• Office hour for today: 1:20pm—2pm

• CS Colloquium: 2pm–3pm at CoRE 301
• “Eliciting Information without Verification from Humans 

and Machines” by Yuqing Kong
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Recap

• Simultaneous-move games
• Normal-form representation
• Solution concepts
• Succinct representations

• Sequential-move games
• Extensive-form representation
• Solution concepts
• Repeated games
• Stackelberg games
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Outline

• Simultaneous-move games
• Normal-form representation
• Solution concepts
• Succinct representations

• Sequential-move games
• Extensive-form representation
• Solution concepts
• Repeated games
• Stackelberg games
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Repeated Games

• A class of sequential-move games

• In a finitely-repeated game 𝐺!, the same simultaneous-move 
game 𝐺 = 𝑁, %𝐴, '𝑢 (i.e., the stage game) is played by the 
same players for 𝑇 ≥ 1 periods
• Perfect information about the history of actions
• 𝐺": infinitely-repeated games, the stage game G is 

repeated forever

• E.g., same players play a Prisoners’ Dilemma for 8 times
same players play rock-paper-scissors
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Finitely-Repeated Games

• A strategy 𝑠# in a finitely-repeated game defines an action 
after every history 

• Total utility at a terminal history: 𝑢# ℎ = ∑$%&!'( /𝑢#(𝑎($))
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Single-deviation principle holds for finitely-repeated games

• Theorem: A strategy profile s* is an SPE of a finitely-repeated 
game 𝐺! if and only if there is no useful single deviation 

Finitely-Repeated Games
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• Theorem (Unique SPE): If the stage game 𝐺 has a unique
Nash equilibrium, then the only SPE s* of the finitely-
repeated game 𝐺! is to play the Nash equilibrium of the 
stage game after every history
Proof:
(1) SPE: a deviation from NE at any ℎ is not useful

(2) Uniqueness: backward induction + unique NE

• E.g., playing Prisoners’ Dilemma or R-P-S multiple times

Finitely-Repeated Games
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• Total discounted utility: 

𝑢# ℎ = 3
$%&

"

𝛿$ ⋅ /𝑢#(𝑎($))

• 0 < 𝛿 < 1 is a discount factor, s.t. 𝑢# ℎ is bounded if 
/𝑢# 𝑎 $ is bounded for all 𝑘

• Single-deviation principle holds for infinitely-repeated 
games with discounting

Infinitely-Repeated Games
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Infinitely-Repeated Games

• An open-loop strategy 𝑠# for player i in a repeated game has 
𝑠# ℎ = 𝑠#(ℎ+) for any history ℎ and ℎ+ of the same length

• Not dependent on the play in previous periods 

• E.g., always “Go”; “Go” or “Wait” with prob=0.5; Cycle 
through “Go”, “Go”, “Wait” 
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Infinitely-Repeated Games

• Theorem: An open-loop, stage-Nash strategy profile 𝑠∗ is a 
SPE of a repeated game, either finite or infinite
Proof:
A single deviation from stage-NE at any ℎ is not useful

• E.g., the cyclic play (W, G), (G, W), (W, G), (G, W)

open-loop, independent of previous play
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Outline

• Simultaneous-move games
• Normal-form representation
• Solution concepts
• Succinct representations

• Sequential-move games
• Extensive-form representation
• Solution concepts
• Repeated games
• Stackelberg games
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Stackelberg Games

• One player (the “leader”) moves first, and the other player 
(the “follower”) moves after

• Can be generalized to multiple leaders/followers

• Applications
• Public policy: a policymaker and other participants
• Security domain: a defender and an attacker
• Online marketplace: the marketplace and buyers/sellers
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Stackelberg Equilibrium

• A two-player game: a leader 𝑙 and a follower 𝑓, with 
corresponding sets of actions A- and A.. A = 𝐴- × A.

• Strategies: 𝑥 ∈ Δ(𝐴-) and y ∈ Δ(𝐴.)

• Utility for a player 𝑖 ∈ {𝑙, 𝑓}:

𝑢# 𝑥, 𝑦 = Ε/!∼1,/"∼3[𝑢#(𝑎-, 𝑎.)]

• The leader knows ex ante that the follower observes its 
action
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Stackelberg Equilibrium

• Given any leader strategy 𝑥, the follower chooses their 
strategy from the best-response set to strategy 𝑥

𝐵𝑅 𝑥 = argmax3∈5 6" 𝑢.(𝑥, 𝑦)

• Based on the best response assumption, the leader chooses 
their strategy 𝑥

max1∈5 6! 𝑢- 𝑥, 𝑦 s. t. 𝑦 ∈ 𝐵𝑅 𝑥

17



Stackelberg Equilibrium

• Given any leader strategy 𝑥, the follower chooses their 
strategy from the best-response set to strategy 𝑥

𝐵𝑅 𝑥 = argmax3∈5 6" 𝑢.(𝑥, 𝑦)

• Based on the best response assumption, the leader chooses 
their strategy 𝑥

max1∈5 6! 𝑢- 𝑥, 𝑦 s. t. 𝑦 ∈ 𝐵𝑅 𝑥

• Which 𝑦 ∈ 𝐵𝑅 𝑥 will the follower choose?
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Stackelberg Equilibrium

• Strong Stackelberg equilibrium (SSE): the follower breaks 
ties in favor of the leader 

max1∈5 6! , 3∈78 1 𝑢- 𝑥, 𝑦

• Weak Stackelberg equilibrium (WSE): the follower breaks 
ties adversarially to the leader 

max1∈5 6! min3∈9: 1 𝑢- 𝑥, 𝑦
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Stackelberg Equilibrium

• Strong Stackelberg equilibrium (SSE): the follower breaks 
ties in favor of the leader 

max1∈5 6! , 3∈78 1 𝑢- 𝑥, 𝑦

• Weak Stackelberg equilibrium (WSE): the follower breaks 
ties adversarially to the leader 

max1∈5 6! min3∈9: 1 𝑢- 𝑥, 𝑦

• Comparing to playing NE, will the leader benefit from firstly 
committing to a strategy? 
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Stackelberg Equilibrium

• Commit to pure actions 𝑎- ∈ 𝐴-?

• Commit to any 𝑥 ∈ Δ(𝐴-)?

• Theorem: In a general-sum game, the leader achieves 
weakly more utility in SSE than in any Nash equilibrium 
Proof: Consider the NE (x, y) that yields the highest utility for the leader 
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Stackelberg Equilibrium

• Commit to pure actions 𝑎- ∈ 𝐴-?

• Commit to any 𝑥 ∈ Δ(𝐴-)?

• Theorem: In a general-sum game, the leader achieves 
weakly more utility in SSE than in any Nash equilibrium 
Proof: Consider the NE (x, y) that yields the highest utility for the leader

• Theorem: In a general-sum game, the WSE provides the 
leader a utility at least as good as some Nash equilibrium 
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Today: Equilibrium Computation

• NE in a two-player, zero-sum game
• PSNE in a general-sum game
• MSNE in a two-player, general-sum game
• MSNE in a general-sum game
• CE in a general-sum game
• SSE in Stackelberg game (one leader, one follower) 
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Today: Equilibrium Computation

• NE in a two-player, zero-sum game
• PSNE in a general-sum game
• MSNE in a two-player, general-sum game
• MSNE in a general-sum game
• CE in a general-sum game
• SSE in Stackelberg game (one leader, one follower) 
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Recap: Two-Player, Zero-Sum Game

• Matching Pennies game
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Recap: Two-Player, Zero-Sum Game

• Rock-Paper-Scissor
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Example 1: Odd-or-Even Game

• Each player chooses to play $1 or $2

What is the MSNE? 
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Maximin Strategy

• Player 1 selects a strategy to maximize its expected utility, 
given that player 2 knows the goal and selects an action to 
minimize player 1’s expected utility

• A maximin strategy for player 1 in a two-player game

�̅� ∈ argmax1∈5 6# [ min/$∈6$
𝑢((𝑥, 𝑎;)]

• Maximin value for player 1

𝑣( = min
/$∈6$

𝑢((�̅�, 𝑎;)
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Minimax Strategy

• Player 1 selects a strategy to minimize player 2’s expected 
utility, given that player 2 knows the goal and selects an 
action to maximize its expected utility

• A minimax strategy for player 1 in a two-player game

𝑥 ∈ argmin1∈5 6# [m𝑎𝑥/$∈6$
𝑢;(𝑥, 𝑎;)]

• Minimax value for player 2

𝑣; = m𝑎𝑥
/$∈6$

𝑢;(𝑥, 𝑎;)
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Example 1: Odd-or-Even Game

What is the maximin strategy for player 1? 
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Example 1: Odd-or-Even Game

What is the maximin strategy for player 1? 
   𝑥:	player 1’s probability of choosing 1D
   Player 1 will choose the 𝑥 that maximizes

 min(𝑢!(𝑥, 1𝐷), 𝑢!(𝑥, 2𝐷)) 	= 	min(−2𝑥	 + 	3(1 − 𝑥), 3𝑥 − 4(1 − 𝑥))	
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Example 1: Odd-or-Even Game

Exercise: What is the maximin strategy for player 2? 
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The Minimax Theorem 

Theorem 3.4 (Minimax). In any two-player, zero-sum game, 

(1) For each player, the set of maximin strategies is equal to 
the set of minimax strategies 
Proof:

(1) Each player’s maximin value is equal to its minimax value, 
and equal to its expected utility in any Nash equilibrium

(2) Any maximin or minimax strategy for player 1 and any 
maximin or minimax strategy for player 2 form a Nash 
equilibrium, and these correspond to all Nash equilibria 
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The Minimax Theorem 

Theorem 3.4 (Minimax). In any two-player, zero-sum game, 

(1) For each player, the set of maximin strategies is equal to 
the set of minimax strategies 

(2) Each player’s maximin value is equal to its minimax value, 
and equal to its expected utility in any Nash equilibrium

(3) Any maximin or minimax strategy for player 1 and any 
maximin or minimax strategy for player 2 form a Nash 
equilibrium, and these correspond to all Nash equilibria 
Proof:
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Solving for the Maximin Strategy

For player 1

the prob. of playing action j
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Solving for the Maximin Strategy

What is the maximin strategy for player 1? 

Odd-or-Even Game

37



Linear Programming

LPs can be solved in polynomial time using interior point 
methods. In practice, the (worst-case exponential) simplex 
method is often faster.

38



Solving for the Maximin Strategy

Theorem. FindNash in a two-player, zero-sum, normal-form 
game can be solved in worst-case polynomial time in the size 
of the payoff matrix

Proof: 
• The LP for finding a maximin strategy has 1 + |𝐴!| variables, 

and |𝐴"| + 1 + |𝐴!| constraints 
• By the Minimax theorem, the maximin strategies for each 

player provide a Nash equilibrium 

39



Stackelberg Equilibrium

• Given any leader strategy 𝑥, the follower chooses their 
strategy from the best-response set to strategy 𝑥

𝐵𝑅 𝑥 = argmax3∈5 6" 𝑢.(𝑥, 𝑦)

• Based on the best response assumption, the leader chooses 
their strategy 𝑥

max1∈5 6! 𝑢- 𝑥, 𝑦 s. t. 𝑦 ∈ 𝐵𝑅 𝑥

In two-player, zero-sum game, Nash equilibrium and Stackelberg 
equilibrium are equivalent! 
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Today: Equilibrium Computation

• NE in a two-player, zero-sum game
• PSNE in a general-sum game
• MSNE in a two-player, general-sum game
• MSNE in a general-sum game
• CE in a general-sum game
• SSE in Stackelberg game (one leader, one follower) 
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Computing PSNE in a General-Sum Game

Subroutines:
• IsNash( 𝑎(, … , 𝑎< , 𝐺): check whether an action profile is a 

Nash equilibrium 
• next(𝑎, 𝐺): return the next action profile

𝑛 𝑚 − 1  single deviations

𝑚# action profiles

The size of payoff matrix: O n𝑚# ; The runtime of computing PSNE: O n𝑚#$!  
42



Pre-Processing: Iterated Elimination 

An action 𝑎# ∈ 𝐴# is strictly dominated if there exists a mixed 
strategy 𝑥 that places no probability on 𝑎# s.t.

𝑢# 𝑥, 𝑎'# > 𝑢# 𝑎#, 𝑎'# . ∀𝑎'# ∈ 𝐴'#

Question: Can we use an LP to determine whether 𝑎# is 
strictly dominated by some mixed strategy?
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Pre-Processing: Iterated Elimination 

An action 𝑎# ∈ 𝐴# is strictly dominated if there exists a mixed 
strategy 𝑥 that places no probability on 𝑎# s.t.

𝑢# 𝑥, 𝑎'# > 𝑢# 𝑎#, 𝑎'# . ∀𝑎'# ∈ 𝐴'#

minimize ∑𝑥=

subject to ∑=∈6% 𝑢#(𝑗, 𝑎'#) 𝑥= ≥ 𝑢# 𝑎#, 𝑎'# ∀𝑎'# ∈ 𝐴'#

𝑥=≥ 0 ∀𝑗 ∈ 𝐴#

Check ∑𝑥= < 1 to see whether 𝑎# is strictly dominated

the prob. of playing action j
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Pre-Processing: Iterated Elimination 

Runtime analysis
• For each game, there can be at most 𝑛(𝑚 − 1) stages 
• In each stage, it needs to check at most 𝑚 actions per agent, 

i.e., we run 𝑚𝑛 LPs
• Note: solving a polynomial number of LPs is still in P
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Today: Equilibrium Computation

• NE in a two-player, zero-sum game
• PSNE in a general-sum game
• MSNE in a two-player, general-sum game
• MSNE in a general-sum game
• CE in a general-sum game
• SSE in Stackelberg game (one leader, one follower) 
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Computing MSNE in a Two-Player, 
General-Sum Game

Subroutines:
• next(𝑋, 𝑌): perform the support enumeration by returning 

the next pair of action sets, 𝑋, 𝑌 ⊆ 𝐴(× 𝐴;
E.g., ({R},{R}), ({R},{P}), …,({R},{P,S}),…,({R,P},{P,S})…,({R,P,S},{R,P,S})

• CheckNash( 𝑋, 𝑌 , 𝐺): look for a Nash equilibrium 𝑥, 𝑦
that have support 𝜎 𝑥 ⊆ 𝑋, 𝜎 𝑦 ⊆ 𝑌 and satisfy

(P1) Player 1 is indifferent across every action in X, given strategy y 
and weakly prefers any action in X to any other action 
(P2) Player 2 is indifferent across every action in Y, given strategy x 
and weakly prefers any action in Y to any other action

𝑂(2!") action set pairs!

Polynomial time
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Computing MSNE in a Two-Player, 
General-Sum Game

Subroutines:
• next(𝑋, 𝑌): perform the support enumeration by returning 

the next pair of action sets, 𝑋, 𝑌 ⊆ 𝐴(× 𝐴;
• CheckNash( 𝑋, 𝑌 , 𝐺): look for a Nash equilibrium 𝑥, 𝑦

that have support 𝜎 𝑥 ⊆ 𝑋, 𝜎 𝑦 ⊆ 𝑌
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Traffic Light Game

Two pure-strategy NE: (G, W) and (W, G)
A mixed-strategy NE: (2/3, 1/3) for both players

Support of 1

Support of 2
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Traffic Light Game (Variation)

X = {W, G}, Y = {W, G}
CheckNash returns MSNE (2/3, 1/3, 0) for both players
W and G are better than C: u( C, y = u; x, C = −1/6
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Computing MSNE in a Two-Player, 
General-Sum Game

Theorem. (1) CheckNash is guaranteed to return a NE when 
the input, (X, Y), corresponds to the support of a NE 
(2)The CheckNash problem can be solved in polynomial time

Proof for (1):
(P1) and (P2) guarantees a Nash equilibrium.  
when (X, Y) corresponds to the support of a Nash equilibrium, 
there is at least one strategy profile that satisfies (P1) and (P2)
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Computing MSNE in a Two-Player, 
General-Sum Game

Subroutines:
• next(𝑋, 𝑌): perform the support enumeration by returning 

the next pair of action sets, 𝑋, 𝑌 ⊆ 𝐴(× 𝐴;
E.g., ({R},{R}), ({R},{P}), …,({R},{P,S}),…,({R,P},{P,S})…,({R,P,S},{R,P,S})

• CheckNash( 𝑋, 𝑌 , 𝐺): look for a Nash equilibrium 𝑥, 𝑦
that have support 𝜎 𝑥 ⊆ 𝑋, 𝜎 𝑦 ⊆ 𝑌 and satisfy

(P1) Player 1 is indifferent across every action in X, given strategy y 
and weakly prefers any action in X to any other action 
(P2) Player 2 is indifferent across every action in Y, given strategy x 
and weakly prefers any action in Y to any other action

𝑂(2!") action set pairs!

Polynomial time
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Computing MSNE in a Two-Player, 
General-Sum Game

Theorem. (1) CheckNash is guaranteed to return a NE when 
the input, (X, Y), corresponds to the support of a NE 
(2)The CheckNash problem can be solved in polynomial time

Proof for (2): a linear feasibility program following (P1) and (P2)

|𝐴!| + |𝐴"| + 2	variables; |𝐴"| + (1 + |𝐴!|) + |𝐴!| + (1 + |𝐴"|)	constraints 53



Computing MSNE in a Two-Player, 
General-Sum Game

Exercise. For X={M, D}, Y={L, R}, solve CheckNash for the game
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Today: Equilibrium Computation

• NE in a two-player, zero-sum game
• PSNE in a general-sum game
• MSNE in a two-player, general-sum game
• MSNE in a general-sum game
• CE in a general-sum game
• SSE in Stackelberg game (one leader, one follower) 
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Computing MSNE in a Multi-Player, 
General-Sum Game

• Extend support enumeration method to multi-player, 
general-sum game
• The number of support tuples: 2D − 1 <

• CheckNash( 𝑋, 𝑌, 𝑍 , 𝐺) for three-player game
• Player 1 is indifferent across all actions in X

3
$∈6$

3
-∈6&

𝑢( 𝑗, 𝑘, 𝑙 ⋅ 𝑦$𝑧- = 𝑣( ∀𝑗 ∈ 𝑋

• Suitable for solving multi-player games that have Nash 
equilibria with small supports 

Nonlinear feasible problem!
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Today: Equilibrium Computation

• NE in a two-player, zero-sum game
• PSNE in a general-sum game
• MSNE in a two-player, general-sum game
• MSNE in a general-sum game
• CE in a general-sum game
• SSE in Stackelberg game (one leader, one follower) 
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Recap: Correlated Equilibrium (CE)

j ∈ 𝜎 𝜋# : an action 𝑗 may be suggested to player i

𝑝'# 𝑎'# 𝑗): the probability of 𝑎'# ∈ 𝐴'# suggested for others, 
conditioned on action 𝑗 being suggested to agent i

• A probability distribution 𝑝∗ on action profiles 𝐴 is a 
correlated equilibrium if and only if

8
%!"∈'!"

𝑢( 𝑗, 𝑎)( ⋅ 𝑝)(∗ 𝑎)( 𝑗) ≥ 8
%!"∈'!"

𝑢( 𝑗+, 𝑎)( ⋅ 𝑝)(∗ 𝑎)( 𝑗) ,

∀𝑖 ∈ 𝑛, 𝑗 ∈ 𝜎 𝑝(∗ , 𝑗′ ∈ A(
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Recap: Correlated Equilibrium (CE)

A probability distribution 𝑝∗ on action profiles 𝐴 is a correlated 
equilibrium if and only if

E
#!"∈%!"

𝑢& 𝑗, 𝑎'& ⋅ 𝑝'&∗ 𝑎'& 𝑗) ⋅ 𝑝&∗(𝑗) ≥ E
#!"∈%!"

𝑢& 𝑗), 𝑎'& ⋅ 𝑝'&∗ 𝑎'& 𝑗) ⋅ 𝑝&∗(𝑗),

∀𝑖 ∈ 𝑛, 𝑗 ∈ A& , 𝑗′ ∈ A&

8
%!"∈'!"

𝑢( 𝑗, 𝑎)( ⋅ 𝑝∗(𝑗, 𝑎)() ≥ 8
%!"∈'!"

𝑢( 𝑗+, 𝑎)( ⋅ 𝑝∗ 𝑗, 𝑎)( ,

∀𝑖 ∈ 𝑛, 𝑗 ∈ A(, 𝑗′ ∈ A(
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Computing CE in a Multi-Player, General-
Sum Game

• A linear feasibility program to find CE
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Computing CE in a Two-Player, General-
Sum Game

• A linear feasibility program to find CE
|𝐴!|( 𝐴! − 1) constraints

|𝐴"|( 𝐴" − 1) constraints

𝐴! 𝐴" + 1 constraints

𝐴! 𝐴"  variables
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Computing CE in a Multi-Player, General-
Sum Game
Theorem. A correlated equilibrium of a multi-player, general-
sum, normal-form game can be computed in polynomial time 
in the size of the payoff matrix. 

Proof:
For a game with 𝑚 actions per agent and 𝑛 agents, there are 
𝑚< variables. 
For each agent to follow recommended action, there are 
𝑚(𝑚 − 1) constraints; for 𝑛 agents, there are 𝑚 𝑚 − 1 𝑛
constraints.
There are 1 +𝑚< constraints to guarantee a valid probability 
distribution. 

𝑂(𝑛𝑚<) entries
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Computing CE in a Multi-Player, General-
Sum Game
Theorem. A correlated equilibrium of a multi-player, general-
sum, normal-form game can be computed in polynomial time 
in the size of the payoff matrix. 

Proof:
For a game with 𝑚 actions per agent and 𝑛 agents, there are 
𝑚< variables. 
For each agent to follow recommended action, there are 
𝑚(𝑚 − 1) constraints; for 𝑛 agents, there are 𝑚 𝑚 − 1 𝑛
constraints.
There are 1 +𝑚< constraints to guarantee a valid probability 
distribution. 

𝑂(𝑛𝑚<) entries
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Traffic Light Game

Exercise: What are the correlated equilibrium?
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Equilibrium Hierarchy for 
Simultaneous-Move Games

DSE

PSNE

MSNE

CE

CCE

intractable

polynomial
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Computing CE, NE under Succinct 
Representations

• Normal-form representation is exponential in #players

• Theorem. A correlated equilibrium can be computed in 
polynomial time in the size of the congestion-game, agent-
graph, and action-graph representations of simultaneous-
move games 

• Succinct game representations also grant faster computation 
of the expected utility of a mixed strategy, thus also of NE
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Similar Approaches to FindNash?

For a Nash equilibrium, we have

∀𝑖 ∈ 𝑛 , 𝑗 ∈ 𝜎 𝑠(∗ , 𝑗+ ∈ 𝐴(

𝑠(,∗ : the probability of agent 𝑖 playing strategy 𝑗 in 𝑠(∗

∀𝑖 ∈ 𝑛 , 𝑗, 𝑗+ ∈ 𝐴(
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Similar Approaches to FindNash?

For a two-player game, we have

A nonlinear feasibility program to find NE
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Computing CE in a Two-Player, General-
Sum Game

A linear feasibility program to find CE
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Today: Equilibrium Computation

• NE in a two-player, zero-sum game
• PSNE in a general-sum game
• MSNE in a two-player, general-sum game
• MSNE in a general-sum game
• CE in a general-sum game
• SSE in Stackelberg game (one leader, one follower) 
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Example: Inspection Game

Cheat No Cheat
Inspect -6, -9 -1, 0
No Inspection -10, 1 0, 0

An inspector chooses whether to inspect or not;
The inspectee chooses whether to cheat or not.

Exercise: What is the NE of the game? What are 
the expected utilities for each player?
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Example: Inspection Game

Cheat No Cheat
Inspect -6, -9 -1, 0
No Inspection -10, 1 0, 0

An inspector chooses whether to inspect or not;
The inspectee chooses whether to cheat or not.

Exercise: What is the NE of the game? What are 
the expected utilities for each player?

(1/10, 1/5) with expected utility (-2, 0)
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Example: Inspection Game

Cheat No Cheat
Inspect -6, -9 -1, 0
No Inspection -10, 1 0, 0

An inspector chooses whether to inspect or not;
The inspectee chooses whether to cheat or not.

What is the SSE of the game? What are the 
expected utilities for each player?

What is the WSE of the game? What are the 
expected utilities for each player?
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Stackelberg Equilibrium

• Strong Stackelberg equilibrium (SSE): the follower breaks 
ties in favor of the leader 

max1∈5 6! , 3∈78 1 𝑢- 𝑥, 𝑦

• Weak Stackelberg equilibrium (WSE): the follower breaks 
ties adversarially to the leader 

max1∈5 6! min3∈9: 1 𝑢- 𝑥, 𝑦
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Example: Inspection Game

Cheat No Cheat
Inspect -6, -9 -1, 0
No Inspection -10, 1 0, 0

An inspector chooses whether to inspect or not;
The inspectee chooses whether to cheat or not.

SSE: (1/10, No Cheat) with utility (-1/10, 0)

WSE: does not exist (p > 1/10, No Cheat)
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Compute SSE in a Stackelberg Game

• Iterate over 𝑎. ∈ 𝐴.

• Find the 𝑥∗ associated to the LP with the highest objective
• Find the 𝑎.∗ that best respond to 𝑥∗

|𝐴-| variables

𝐴. − 1 constraints
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