CS 598: Al Methods for Market Design Lecture 2: Intro to Game Theory

Xintong Wang
Spring 2024

Logistics

- Pre-class CQs
- Due before each lecture
- Binary grading scheme
- Two chances to drop
- Paper presentations
- Bidding on papers
- Presentation guidelines

Outline

- Simultaneous-move games
- Normal-form representation
- Solution concepts
- Succinct representations
- Sequential-move games
- Extensive-form representation
- Solution concepts
- Repeated games
- Stackelberg games

Outline

- Simultaneous-move games
- Normal-form representation
- Solution concepts
- Succinct representations
- Sequential-move games
- Extensive-form representation
- Solution concepts
- Repeated games
- Stackelberg games

Example 1: Prisoners' Dilemma

- Two people are arrested and accused of a crime
- They are questioned in separate rooms (no communication)
- Each prisoner has two choices, Cooperate or Defect, and gets different payoffs depending on the outcome:

Player 2

Example 1: Prisoners' Dilemma

- Two people are arrested and accused of a crime
- They are questioned in separate rooms (no communication)
- Each prisoner has two choices, Cooperate or Defect, and gets different payoffs depending on the outcome:

Player 2

How should each player act?

Example 1: Prisoners' Dilemma

- Two people are arrested and accused of a crime
- They are questioned in separate rooms (no communication)
- Each prisoner has two choices, Cooperate or Defect, and gets different payoffs depending on the outcome:

Player 2

How should each player act?

Components of a Game

- Agents / Players: participants of the game, may be an individual, organization, a machine or algorithm...
- Strategies: actions available to each player
- Outcome: the profile of player strategies
- Payoffs: a function mapping an outcome to a utility / payoff for each player

Simultaneous-Move Game

A simultaneous-move game has (N, A, u)

- $N=\{1,2, \ldots, n\}$ agents, indexed by i
- $A=A_{1} \times \cdots \times A_{n}$, where each agent plays an action $a_{i} \in A_{i}$ and the action profile is $a=\left(a_{1}, \ldots, a_{n}\right) \in A$
- As a convention, $a_{-i}=\left(a_{1}, \ldots, a_{i-1}, a_{i+1}, \ldots, a_{n}\right)$
- $u=\left(u_{1}, \ldots, u_{n}\right)$, where $u_{i}: A \rightarrow \mathbb{R}$ is a utility function (or payoff function) for agent i, and assigns a utility (or payoff) to every action profile $a \in A$

Simultaneous-Move Game

Some notes on simultaneous-move game

- Simultaneous: each agent selects an action without knowledge about the actions that are selected by others
- Complete information: every agent knows the available actions and utility functions of all agents
- $\left\{A_{i}, u_{i}\right\}_{i \in[n]}$ are public knowledge

Outline

- Simultaneous-move games
- Normal-form representation
- Solution concepts
- Succinct representations
- Sequential-move games
- Extensive-form representation
- Solution concepts
- Repeated games
- Stackelberg games

Normal-Form Representation

The normal-form representation of a simultaneous-move game (N, A, u) represents the payoffs to agents as a payoff matrix

Player 2

What is the dimension of a payoff matrix with n players, each with m actions?

Example 1: Prisoners' Dilemma

- 2 agents: $\mathrm{N}=\{1,2\}$
- $A_{1}=A_{2}=\{C, D\}$ and $\mathrm{a} \in \mathrm{A}=A_{1} \times A_{2}=\{(\mathrm{C}, \mathrm{C}),(\mathrm{C}, \mathrm{D}),(\mathrm{D}, \mathrm{C}),(\mathrm{D}, \mathrm{D})\}$
- $u_{1}(\cdot)$ and $u_{2}(\cdot)$ are predefined
- $u_{1}(C, C)=-1, u_{1}(C, D)=-5, u_{1}(D, C)=0, u_{1}(D, D)=-3$
- The whole game is public knowledge
- Agents take actions without knowing others' choice of action

Player 2

	C	D
Player 1	-1, -1	-5, 0
	0, -5	-3, -3

Outline

- Simultaneous-move games
- Normal-form representation
- Solution concepts
- Succinct representations
- Sequential-move games
- Extensive-form representation
- Solution concepts
- Repeated games
- Stackelberg games

Pareto Optimality

- An action profile $a \in A$ is Pareto dominated by another action profile $a^{\prime} \in A$ if and only if

$$
\begin{aligned}
& u_{i}\left(a^{\prime}\right) \geq u_{i}(a) \text { for all agents } i \in N \text { and } \\
& u_{i}\left(a^{\prime}\right)>u_{i}(a) \text { for some agent } i \in N
\end{aligned}
$$

- For example, action profile (D,D) is Pareto dominated by (C, C)

Player 2

	C	D
Player 1	-1, -1	-5, 0
	0, -5	-3, -3

Pareto Optimality

- An action profile $a \in A$ is Pareto optimal if and only if there is no action profile $a^{\prime} \in A$ that Pareto dominates a
- For example, action profile (C, C) is Pareto optimal

Any other Pareto optimal action profile?
Player 2

Dominant Strategy

- An action $\mathrm{a}_{i} \in A_{i}$ is a dominant strategy for player i if a_{i} is better than any other action $\mathrm{a}^{\prime}{ }_{i} \in A_{i}$, regardless what actions other players take

$$
u_{i}\left(a_{i}, a_{-i}\right) \geq u_{i}\left(a_{i}^{\prime}, a_{-i}\right), \quad \forall a_{i}^{\prime} \neq a_{i} \forall a_{-i}
$$

- "Defect" is a dominant strategy for both agents

Player 2

Dominant Strategy

- Dominant strategies do not always exist
- Consider the following two-player, three-action game

\[

\]

Is there a dominant strategy? Is there a strictly dominated strategy?

Dominant-Strategy Equilibrium (DSE)

- An action profile $a^{*}=\left(a_{1}^{*}, \ldots, a_{n}^{*}\right) \in A$ is a dominantstrategy equilibrium (DSE) if and only if

$$
u_{i}\left(a_{i}^{*}, a_{-i}\right) \geq u_{i}\left(a_{i}, a_{-i}\right), \quad \forall i \in n, a_{i} \in A_{i}, a_{-i} \in \mathrm{~A}_{-i}
$$

- (D, D) is a dominant-strategy equilibrium
- Predictive power: no need to reason about others' actions!

Player 2

Dominant-Strategy Equilibrium (DSE)

- Dominant-strategy equilibrium do not always exist
- Consider the following two-player, three-action game

			layer	
		L	M	R
	U	4, 3	5, 1	6,2
Player 1	M	2, 1	8, 4	3, 6
	D	3, 0	9, 6	2, 8
	Is there a DSE?			
		about	ther s	ution

Pure-Strategy Nash Equilibrium (PSNE)

- An action profile $a^{*}=\left(a_{1}^{*}, \ldots, a_{n}^{*}\right) \in A$ is a pure-strategy Nash equilibrium if and only if

$$
u_{i}\left(a_{i}^{*}, a_{-i}^{*}\right) \geq u_{i}\left(a_{i}, a_{-i}^{*}\right), \quad \forall i \in n, a_{i} \in A_{i}
$$

- Every agent plays a best response to the actions of others

Player 2

Which action profile is a PSNE?

Pure-Strategy Nash Equilibrium (PSNE)

- An action profile $a^{*}=\left(a_{1}^{*}, \ldots, a_{n}^{*}\right) \in A$ is a pure-strategy Nash equilibrium if and only if

$$
u_{i}\left(a_{i}^{*}, a_{-i}^{*}\right) \geq u_{i}\left(a_{i}, a_{-i}^{*}\right), \quad \forall i \in n, a_{i} \in A_{i}
$$

- Every agent plays a best response to the actions of others

Player 2

Player 1

Which action profile is a PSNE?

Pure-Strategy Nash Equilibrium (PSNE)

Some notes on Nash equilibrium:

- Require common knowledge of rationality
- Serve a sensible prediction of behavior

Which action profile is a PSNE?

Finding Nash Equilibrium: First Attempt

Iterated elimination of strictly dominated actions

- Step 1: remove action M for player 2

Which action profile is a PSNE?

Finding Nash Equilibrium: First Attempt

Iterated elimination of strictly dominated actions

- Step 1: remove action M for player 2
- Step 2: remove actions M and D for player 1 (M and D are strictly dominated by U as long as player 2 selects L or R)

Which action profile is a PSNE?

Finding Nash Equilibrium: First Attempt

Iterated elimination of strictly dominated actions

- Step 1: remove action M for player 2
- Step 2: remove actions M and D for player 1 (M and D are strictly dominated by U, if player 2 selects L or R)
- Step 3: player 2 plays L, if player 1 chooses U, so (U, L)

Which action profile is a PSNE?

Finding Nash Equilibrium: First Attempt

Iterated elimination of strictly dominated actions
Questions to think about:

- What is the time complexity of iterated elimination of strictly dominated actions by pure actions, for a game of n players each with m actions?
- Will iterated elimination of weakly dominated actions work in finding NE?

Pure-Strategy Nash Equilibrium (PSNE)

- Pure-strategy Nash equilibrium does not always exist
- Consider rock-paper-scissor

	Rock	Paper	Scissor
Rock	$(0,0)$	$(-1,1)$	$(1,-1)$
Paper	$(1,-1)$	$(0,0)$	$(-1,1)$
Scissor	$(-1,1)$	$(1,-1)$	$(0,0)$

Pure-Strategy Nash Equilibrium (PSNE)

- Pure-strategy Nash equilibrium does not always exist
- Consider the Matching Pennies game

\[

\]

Mixed Strategy

- Pure strategy: take an action deterministically
- Mixed strategy: randomize over actions
- Described by a distribution s_{i} where $s_{i}\left(a_{i}\right) \geq 0$ denotes the probability of taking an action a_{i}
- $\left|A_{i}\right|$-dimensional simplex $\Delta\left(A_{i}\right):=\left\{s_{i}: \sum_{a_{i} \in A_{i}} s_{i}\left(a_{i}\right)=1\right\}$ contains all possible mixed strategies for player i
- Each agent independently draws an action based on its mixed strategy s_{i}

Mixed Strategy

- A strategy profile is then $s=\left(s_{1}, \ldots, s_{n}\right)$
- The probability of action profile $a=\left(a_{1}, \ldots, a_{n}\right)$ is then $\mathrm{p}(\mathrm{a})=\prod_{i \in[n]} s_{i}\left(a_{i}\right)$ due to independence
- Given a strategy profile $s=\left(s_{1}, \ldots, s_{n}\right)$, the expected utility of agent i is

$$
u_{i}(s)=\sum_{\mathrm{a} \in \mathrm{~A}} u_{i}(a) \cdot \mathrm{p}(\mathrm{a})=\sum_{\mathrm{a} \in \mathrm{~A}} u_{i}(a) \cdot \prod_{i \in[n]} s_{i}\left(a_{i}\right)
$$

Mixed Strategy

- Exercise: Given strategy s1 = $(0.4,0.6)$ for player 1 and strategy $\mathrm{s} 2=(1,0)$ for player 2 , what is the expected utility for player 1?

$$
\begin{aligned}
& \text { Player } 2 \\
& \\
& u_{i}(s)=\sum_{\mathrm{a} \in \mathrm{~A}} u_{i}(a) \cdot \mathrm{p}(\mathrm{a})=\sum_{\mathrm{a} \in \mathrm{~A}} u_{i}(a) \cdot \prod_{i \in[n]} s_{i}\left(a_{i}\right)
\end{aligned}
$$

Mixed-Strategy Nash Equilibrium (MSNE)

- A strategy profile $s^{*}=\left(s_{1}^{*}, \ldots, s_{n}^{*}\right)$ is a mixed-strategy Nash equilibrium if and only if

$$
u_{i}\left(s_{i}^{*}, s_{-i}^{*}\right) \geq u_{i}\left(s_{i}, s_{-i}^{*}\right), \quad \forall i \in n, s_{i} \in \Delta\left(A_{i}\right)
$$

- Every agent plays a best response to the strategies of others

Pure-Strategy Nash Equilibrium

- An action profile $a^{*}=\left(a_{1}^{*}, \ldots, a_{n}^{*}\right) \in A$ is a pure-strategy Nash equilibrium if and only if

$$
u_{i}\left(a_{i}^{*}, a_{-i}^{*}\right) \geq u_{i}\left(a_{i}, a_{-i}^{*}\right), \quad \forall i \in n, a_{i} \in A_{i}
$$

- Every agent plays a best response to the actions of others

Mixed-Strategy Nash Equilibrium (MSNE)

Some notes on best responses:

- The support of mixed strategy s_{i} is the set of actions played with strictly-positive probability, i.e.,

$$
\sigma\left(s_{i}\right)=\left\{a_{i}: s_{i}\left(a_{i}\right)>0, a_{i} \in A_{i}\right\} \subseteq A_{i}
$$

- A useful property: all actions in the support of s_{i}^{*} have the same expected utility
- A strategy profile $s^{*}=\left(s_{1}^{*}, \ldots, s_{n}^{*}\right)$ is a mixed-strategy Nash equilibrium if and only if

$$
\begin{gathered}
u_{i}\left(s_{i}^{*}, s_{-i}^{*}\right) \geq u_{i}\left(s_{i}, s_{-i}^{*}\right), \quad \forall i \in n, s_{i} \in \Delta\left(A_{i}\right) \\
u_{i}\left(a_{i}, s_{-i}^{*}\right) \geq u_{i}\left(s_{i}, s_{-i}^{*}\right), \quad \forall i \in n, a_{i} \in \sigma\left(s_{i}^{*}\right), s_{i} \in \Delta\left(A_{i}\right) \\
u_{i}\left(a_{i}, s_{-i}^{*}\right) \geq u_{i}\left(a_{i}^{\prime}, s_{-i}^{*}\right), \quad \forall i \in n, a_{i} \in \sigma\left(s_{i}^{*}\right), a_{i}^{\prime} \in A_{i}
\end{gathered}
$$

Mixed-Strategy Nash Equilibrium (MSNE)

What is the mixed-strategy Nash equilibrium?

\[

\]

Mixed-Strategy Nash Equilibrium (MSNE)

Theorem (Nash, 1951): Every finite simultaneous-move game has at least one mixed-strategy Nash equilibrium

- A fundamental result in game theory
- An equilibrium outcome is not necessarily the best for players
- Describe where the game may stabilize at
- Understand how self-interested behaviors reduces overall social welfare (Price of Anarchy (PoA))

Player 2

Mixed-Strategy Nash Equilibrium (MSNE)

Theorem (Nash, 1951): Every finite simultaneous-move game has at least one mixed-strategy Nash equilibrium

- A game may have many, even infinitely many, NEs
- When facing multiple equilibria, may need additional assumptions

Mixed-Strategy Nash Equilibrium (MSNE)

Theorem (Nash, 1951): Every finite simultaneous-move game has at least one mixed-strategy Nash equilibrium

Equilibrium is a prediction of agent behaviors and a prediction of system outcomes from strategic interactions

- ML: data-driven
- Equilibrium analysis: model-driven \& data-driven
- Learn what game agents are playing (e.g., game parameters)
- Learn payoff functions
- Learn how rational agents are (e.g., behavioral economics)
- ...

Example 2: Traffic Light Game

- Exercise: What are the equilibria of the game?

Example 2: Traffic Light Game

- Exercise: What are the equilibria of the game?

Two pure-strategy NE: (G, W) and (W, G)
A mixed-strategy NE: $(2 / 3,1 / 3)$ for both players
Chance of a crash: $1 / 9$, when each agent draws an action independently

Example 2: Traffic Light Game

- Introduce an external, shared signal: the traffic light

Example 2: Traffic Light Game

- Introduce an external, shared signal: the traffic light

- Each player's strategy selects an action
- $a_{1}=G$ if signal is $0, a_{1}=W$ otherwise
- $a_{2}=W$ if signal is $0, a_{2}=G$ otherwise
- An equilibrium: each agent plays a best response to the other, conditioned on the signal

Correlated Equilibrium (CE)

- A recommendation policy π assigns probability $\pi(a)$ for each action profile $a \in A$
- A mediator samples $a \sim \pi$, then recommends a_{i} to agent i
- A (fair) correlated equilibrium: $\left(\begin{array}{cc}0 & 1 / 2 \\ 1 / 2 & 0\end{array}\right)$
- Nash equilibria: $\left(\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right)\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)\left(\begin{array}{ll}4 / 9 & 2 / 9 \\ 2 / 9 & 1 / 9\end{array}\right)$

Player 1

Correlated Equilibrium (CE)

$a_{i} \in \sigma\left(\pi_{i}\right):$ an action a_{i} may be suggested to player i
$\pi_{-i}\left(a_{-i} \mid a_{i}\right)$: the probability of $a_{-i} \in A_{-i}$ suggested for others, conditioned on action a_{i} being suggested to agent I

- A probability distribution π on action profiles A is a correlated equilibrium if and only if

$$
\begin{array}{r}
\sum_{a_{-i} \in A_{-i}} u_{i}\left(a_{i}, a_{-i}\right) \cdot \pi_{-i}\left(a_{-i} \mid a_{i}\right) \geq \sum_{a_{-i} \in A_{-i}} u_{i}\left(a_{i}^{\prime}, a_{-i}\right) \cdot \pi_{-i}\left(a_{-i} \mid a_{i}\right) \\
\forall i \in n, a_{i} \in \sigma\left(\pi_{i}\right), a_{i}^{\prime} \in \mathrm{A}_{i}
\end{array}
$$

Correlated Equilibrium (CE)

Some notes on correlated equilibrium

- π is public knowledge
- No agent wants to deviate from its suggested action, assuming others also follow their suggested actions
- When actions are drawn independently, $\pi_{-i}\left(a_{-i} \mid a_{i}\right)$ is the product of the marginal probability with other players play their corresponding action in a

Correlated Equilibrium

- Fact: Any Nash equilibrium is also a correlated equilibrium
- Corollary: Every finite, simultaneous-move game has at least one correlated equilibrium
- How to compute correlated equilibrium?

Correlated Equilibrium

In practice, what are the correlation devices?

- Traffic lights
- Google Maps
- A shared history of play

Coarse Correlated Equilibrium (CCE)

- A weaker notion of correlated equilibrium
- A probability distribution π on action profiles A is a coarse correlated equilibrium if and only if

$$
\sum_{a \in A} u_{i}(a) \cdot \pi(a) \geq \sum_{a \in A} u_{i}\left(a_{i}^{\prime}, a_{-i}\right) \cdot \pi(a), \quad \forall i \in n, a_{i}^{\prime} \in \mathrm{A}_{i}
$$

Correlated Equilibrium (CE)

$a_{i} \in \sigma\left(\pi_{i}\right):$ an action a_{i} may be suggested to player i
$\pi_{-i}\left(a_{-i} \mid a_{i}\right)$: the probability of $a_{-i} \in A_{-i}$ suggested for others, conditioned on action a_{i} being suggested to agent i

- A probability distribution π on action profiles A is a correlated equilibrium if and only if

$$
\begin{array}{r}
\sum_{a_{-i} \in A_{-i}} u_{i}\left(a_{i}, a_{-i}\right) \cdot \pi_{-i}\left(a_{-i} \mid a_{i}\right) \geq \sum_{a_{-i} \in A_{-i}} u_{i}\left(a_{i}^{\prime}, a_{-i}\right) \cdot \pi_{-i}\left(a_{-i} \mid a_{i}\right) \\
\forall i \in n, a_{i} \in \sigma\left(\pi_{i}\right), a_{i}^{\prime} \in \mathrm{A}_{i}
\end{array}
$$

Coarse Correlated Equilibrium (CCE)

- A weaker notion of correlated equilibrium
- A probability distribution π on action profiles A is a coarse correlated equilibrium if and only if

$$
\sum_{a \in A} u_{i}(a) \cdot \pi(a) \geq \sum_{a \in A} u_{i}\left(a_{i}^{\prime}, a_{-i}\right) \cdot \pi(a), \quad \forall i \in n, a_{i}^{\prime} \in \mathrm{A}_{i}
$$

- CCE vs. CE: after an action profile is drawn
- CCE: playing a_{i} is a best response for player i, in expectation before seeing a_{i}
- CE: playing a_{i} is a best response for player i, conditioned on seeing a_{i}

$$
\sum_{a_{i}} \sum_{a_{-i} \in A_{-i}} u_{i}\left(a_{i}, a_{-i}\right) \cdot \pi_{-i}\left(a_{-i} \mid a_{i}\right) \geq \sum_{\substack{a_{i} \\ \forall i \in n, a_{i} \in \sigma\left(\pi_{i}\right), a_{i}^{\prime} \in \mathrm{A}_{i}}} \sum_{\substack{a_{-i} \in A_{-i}\\}} u_{i}\left(a_{i}^{\prime}, a_{-i}\right) \cdot \pi_{-i}\left(a_{-i} \mid a_{i}\right)
$$

Equilibrium Hierarchy for Simultaneous-Move Games

Outline

- Simultaneous-move games
- Normal-form representation
- Solution concepts
- Succinct representations
- Sequential-move games
- Extensive-form representation
- Solution concepts
- Repeated games
- Stackelberg games

Succinct Representations

- Congestion games
- Agent-graph games
- Action-graph games

Example 3: Network Flow

- There are 2,000 people who commute to work everyday from point "Start" to point "End"
- Every driver has to choose a path, without seeing what others do

How to represent this simultaneous-move game?

Example 3: Network Flow

- There are 2,000 people who commute to work everyday from point "Start" to point "End"
- Every driver has to choose a path, without seeing what others do

How to represent this simultaneous-move game? 3^{2000} possible action profiles

Congestion Games

A congestion game (N, A, R, c) has

- $N=\{1, \ldots, n\}$ agents, indexed by i,
- $R=\{1, \ldots, q\}$ resources, indexed by r,
- Action profiles $A=A_{1} \times \cdots \times A_{n}$
- $A_{i} \subseteq 2^{R} \backslash \emptyset$: the action set of agent i
- $a_{i} \in A_{i}$: the set of resources used, i.e., $a_{i} \subseteq R$
- Cost function $c_{r}(\cdot) \in \mathbb{R}$ can depend on the number of agents that use the resource r
- $c_{i}(a)=\sum_{r \in a_{i}} c_{r}\left(x_{r, a}\right)$: the cost to agent i, given action profile a
- $x_{r, a}$: the number of agents that select resource r, given action profile a

Example 3: Network Flow

- Agents: $\mathrm{n}=2000$
- Resources: $\mathrm{R}=\{\mathrm{SA}, \mathrm{SB}, \mathrm{AB}, \mathrm{AE}, \mathrm{BE}\}$
- Action set for agent $i: A_{i}=\{\{\mathrm{SA}, \mathrm{AE}\},\{\mathrm{SB}, \mathrm{BE}\},\{\mathrm{SA}, \mathrm{AB}, \mathrm{BE}\}\}$
- Cost functions:

Equilibrium profile

- $c_{S A}(x)=c_{B E}(x)=x / 2000$
- $c_{S B}(x)=c_{A E}(x)=1, c_{A B}(x)=0$
- Eq. cost: $c_{i}\left(a^{*}\right)=c_{S A}(x)+c_{A B}(x)+c_{B E}(x)=\frac{2000}{2000}+0+\frac{2000}{2000}=2$

Congestion Games

Some notes on congestion games

- Symmetry: the payoff depends on the number of agents choosing an action, not which particular player(s)
- The cost / payoff representation scales linearly in the number of agents
- There always exists a pure-strategy Nash equilibrium of a congestion game
- Expressiveness: Not every game can be represented as a congestion game

Agent-Graph Games

An agent-graph game is defined via a graph $G=(V, E)$, which can be either directed or undirected

- V : the set of agents
- $e \in E$: the payoff dependence between connected agents
- Each agent has a set A_{i} of feasible actions
- u_{i} : utility as a function of the actions of the neighbors of agent i

Agent-Graph Games

Some notes on agent-graph games:

- Consider a game of n players, each with m actions; its agentgraph representation has a maximum degree of d
- Each agent's utility can be represented with at most m^{d} numbers
- Payoffs: normal-form $\mathrm{O}\left(\mathrm{nm}^{n}\right)$ vs. agent-graph $\mathrm{O}\left(\mathrm{nm}^{d}\right)$
- The representation size is polynomial in the number of agents and actions, when the degree d is bounded by some constant
- Payoff dependence vs. strategic dependence
- Agent-graph games are fully expressive

Action-Graph Games

An action-graph game is defined via a graph $G=(V, E)$, which can be either directed or undirected:

- $v \in V$: an action in the game
- Each agent has a set $V_{i} \subseteq V$ of feasible actions ($\mathrm{A}_{\mathrm{i}}=V_{i}$)
- $e \in E$: the payoff dependence between agents who take the corresponding actions
- w_{j} : utility to any player who takes the action j, dependent on the number of agents who play neighboring actions to j

Example 4: Food Truck Games

- $\mathrm{n}=20$ sellers compete for business
- $m=6$ different actions to choose from
- Symmetry: utility depends on \#agents taking certain actions

Example 4: Food Truck Games

- $\mathrm{n}=20$ sellers compete for business
- $m=6$ different actions to choose from
- Symmetry: utility depends on \#agents taking certain actions

Payoffs: normal-form $(20)\left(6^{20}\right) \approx 10^{17}$ vs. action-graph $(3)\left(20^{4}\right)+(2)\left(20^{3}\right)+(1)\left(20^{2}\right)=496400$

Action-Graph Games

Some notes on action-graph games:

- Consider a game of n players, each with m actions; its action-graph representation has a maximum degree of d
- Each action utility can be represented with at most n^{d} numbers
- Payoffs: normal-form $\mathrm{O}\left(\mathrm{nm}^{n}\right)$ vs. symmetric action-graph $\mathrm{O}\left(\mathrm{m} n^{d}\right)$
- Non-symmetric action-graph: $m n$ vertices, payoffs $\mathrm{O}\left(\mathrm{m} n^{d+1}\right)$
- The representation size is polynomial in the number of agents and actions, when the degree d is bounded by some constant
- Payoff dependence vs. strategic dependence
- Action-graph games are fully expressive

Comparing Succinct Representations

Questions to think about:

- Show that the action-graph representation is exponentially more succinct than the agent-graph representation

Outline

- Simultaneous-move games
- Normal-form representation
- Solution concepts
- Succinct representations
- Sequential-move games
- Extensive-form representation
- Solution concepts
- Repeated games
- Stackelberg games

Example 5: Bargaining Game

- Step 1: Player 1 determines a split of $\$ 4$
- Choose from "me" (3, 1), "even" (2,2), and "you" (1,3)
- Step 2: Player 2 decides to accept or decline
- Choose " γ " or " N " for each possible proposal

Example 5: Bargaining Game

- Step 1: Player 1 determines a split of $\$ 4$
- Step 2: Player 2 decides to accept or decline

Normal-form representation

$\langle N, N, N\rangle\langle N, N, Y\rangle\langle N, Y, N\rangle\langle N, Y, Y\rangle\langle Y, N, N\rangle\langle Y, N, Y\rangle\langle Y, Y, N\rangle\langle Y, Y, Y\rangle$								
me	0, 0	0, 0	0, 0	0, 0	3, 1	3, 1	3, 1	3, 1
even	0, 0	0, 0	2, 2	2, 2	0, 0	0, 0	2, 2	2, 2
you	0, 0	1, 3	0, 0	1, 3	0, 0	1, 3	0, 0	1,3

What are the Nash equilibria?

Example 5: Bargaining Game

- Step 1: Player 1 determines a split of $\$ 4$
- Step 2: Player 2 decides to accept or decline

Normal-form representation

What are the Nash equilibria?

Example 5: Bargaining Game

- Step 1: Player 1 determines a split of $\$ 4$
- Step 2: Player 2 decides to accept or decline

Normal-form representation

What are the Nash equilibria?
NE only requires that a strategy is a best response for the part of the game that can be "reached" in equilibrium

Sequential-Move Game

Outline

- Simultaneous-move games
- Normal-form representation
- Solution concepts
- Succinct representations
- Sequential-move games
- Extensive-form representation
- Solution concepts
- Repeated games
- Stackelberg games

Extensive-Form Representation

The extensive-form representation of a sequential-move game Γ consists of the following:

- A set $N=\{1, \ldots, n\}$ of agents or players, indexed by i
- A set of history H
- Terminal histories: $h \in Z \subset H$, each as a leaf with a defined utility $u_{i}(h) \in \mathbb{R}$

$$
\text { E.g., } Z=\{(m e, Y),(m e, N),(e v e n, Y),(e v e n, N),(y o u, Y),(y o u, N)\}
$$

- Non-terminal histories: $h \in H \backslash \mathrm{Z}$, each as a decision node with a player $P(h) \in N$ and a set of feasible actions $A_{i}(h)$ E.g., $P(\epsilon)=1, P(m e)=P($ you $)=P($ even $)=2$

$$
\begin{aligned}
& A_{1}(\epsilon)=\{\text { me, even, you }\} \\
& A_{2}((\text { me }))=A_{2}((\text { you }))=A_{2}((\text { even }))=\{\mathrm{Y}, \mathrm{~N}\}
\end{aligned}
$$

Extensive-Form Game

- A strategy s_{i} of player i in an extensive-form game defines an action $s_{i}(h) \in A_{i}(h)$ for all non-terminal histories h when it is player i 's turn
E.g., $s_{1}(\epsilon)=$ you; $s_{2}((m e))=\mathrm{N}, s_{2}(($ you $))=\mathrm{Y}, s_{2}(($ even $))=\mathrm{N}$

Extensive-Form Game

- The subgame at history h, denoted Γ_{h}, of an extensive-form game Γ is the extensive-form game rooted at the decision node in Γ that corresponds to history h
- A strategy in the full game Γ defines a strategy in a subgame Γ_{h}

Outline

- Simultaneous-move games
- Normal-form representation
- Solution concepts
- Succinct representations
- Sequential-move games
- Extensive-form representation
- Solution concepts
- Repeated games
- Stackelberg games

Subgame-Perfect Equilibrium (SPE)

- A strategy profile $s^{*}=\left(s_{1}^{*}, \ldots, s_{n}^{*}\right)$ is a subgame-perfect equilibrium (SPE) of an extensive-form game Γ, if the strategy profile is a Nash equilibrium of game Γ and of subgame Γ_{h} for every non-terminal history h
- Best responses in every subgame, not just the subgames that are reached on the equilibrium path

Finding Subgame-Perfect Equilibrium

The backward induction procedure

Finding Subgame-Perfect Equilibrium

The backward induction procedure

Finding Subgame-Perfect Equilibrium
The backward induction procedure
Take time linear in the number of nodes in tree

Checking Subgame-Perfect Equilibrium

Single-deviation principle

- A single deviation from strategy s_{i} at history h is a strategy s_{i}^{\prime} that differs only in the action played at history h
- A single deviation is useful if

$$
u_{i}\left(s_{i}^{\prime}, s_{-i} \mid \Gamma_{h}\right)>u_{i}\left(s_{i}, s_{-i} \mid \Gamma_{h}\right)
$$

Checking Subgame-Perfect Equilibrium

Single-deviation principle
Theorem: A strategy profile s^{*} is a SPE of a finite extensiveform game if and only if there's no useful single deviation for any player

Proof:
(If) Basic idea: proof by contradiction. If a more complicated, multi-step deviation is useful, then a simpler deviation will be as well
(Only if) SPE \rightarrow NE in subgames \rightarrow no useful single deviation

Checking Subgame-Perfect Equilibrium

Theorem: Any finite extensive-form game has a SPE
Proof:
(1) Use backward induction to find the strategy profile(s)
(2) The found strategy satisfies the single-deviation principle

When do we have a unique SPE?

Outline

- Simultaneous-move games
- Normal-form representation
- Solution concepts
- Succinct representations
- Sequential-move games
- Extensive-form representation
- Solution concepts
- Repeated games
- Stackelberg games

Repeated Games

- A class of sequential-move games
- In a finitely-repeated game G^{T}, the same simultaneous-move game $G=(N, \tilde{A}, \tilde{u})$ (i.e., the stage game) is played by the same players for $T \geq 1$ periods
- Perfect information about the history of actions
- G^{∞} : infinitely-repeated games, the stage game G is repeated forever
- E.g., same players play a Prisoners' Dilemma for 8 times same players play rock-paper-scissors

Finitely-Repeated Games

- A strategy s_{i} in a finitely-repeated game defines an action after every history
- Total utility at a terminal history: $u_{i}(h)=\sum_{k=0}^{T-1} \tilde{u_{i}}\left(a^{(k)}\right)$

Finitely-Repeated Games

Single-deviation principle holds for finitely-repeated games

- Theorem: A strategy profile s^{*} is an SPE of a finitely-repeated game G^{T} if and only if there is no useful single deviation

Finitely-Repeated Games

- Theorem (Unique SPE): If the stage game G has a unique Nash equilibrium, then the only SPE s^{*} of the finitelyrepeated game G^{T} is to play the Nash equilibrium of the stage game after every history Proof:
(1) SPE: a deviation from NE at any h is not useful

$$
u_{i}\left(s_{i}^{\prime}, s_{-i}^{*} \mid h\right)=w_{i}^{\prime}+\sum_{k^{\prime}=k+1}^{T-1} w_{i} \leq w_{i}+\sum_{k^{\prime}=k+1}^{T-1} w_{i}=u_{i}\left(s_{i}^{*}, s_{-i}^{*} \mid h\right)
$$

(2) Uniqueness: backward induction + unique NE

- E.g., playing Prisoners' Dilemma or R-P-S multiple times

Infinitely-Repeated Games

- Total discounted utility:

$$
u_{i}(h)=\sum_{k=0}^{\infty} \delta^{k} \cdot \widetilde{u}_{i}\left(a^{(k)}\right)
$$

- $0<\delta<1$ is a discount factor, s.t. $u_{i}(h)$ is bounded if $\widetilde{u_{i}}\left(a^{(k)}\right)$ is bounded for all k
- Single-deviation principle holds for infinitely-repeated games with discounting

Infinitely-Repeated Games

- An open-loop strategy s_{i} for player i in a repeated game has $s_{i}(h)=s_{i}\left(h^{\prime}\right)$ for any history h and h^{\prime} of the same length
- Not dependent on the play in previous periods
- E.g., always "Go"; "Go" or "Wait" with prob=0.5; Cycle through "Go", "Go", "Wait"

Infinitely-Repeated Games

- Theorem: An open-loop, stage-Nash strategy profile s^{*} is a SPE of a repeated game, either finite or infinite Proof:

A single deviation from stage-NE at any h is not useful

$$
\begin{aligned}
u_{i}\left(s_{i}^{\prime}, s_{-i}^{*} \mid h\right)=w_{i}^{\prime}+\delta \cdot u_{i}\left(s_{i}^{\prime}, s_{-i}^{*} \mid h, a^{\prime}\right) & =w_{i}^{\prime}+\delta \cdot u_{i}\left(s_{i}^{*}, s_{-i}^{*} \mid h, a^{\prime}\right) \\
\hline \text { open-loop, independent of previous play } & =w_{i}^{\prime}+\delta \cdot u_{i}\left(s_{i}^{*}, s_{-i}^{*} \mid h, a\right) \\
& \leq w_{i}+\delta \cdot u_{i}\left(s_{i}^{*}, s_{-i}^{*} \mid h, a\right)=u_{i}\left(s^{*} \mid h\right)
\end{aligned}
$$

- E.g., the cyclic play (W, G), (G, W), (W, G), (G, W)

Outline

- Simultaneous-move games
- Normal-form representation
- Solution concepts
- Succinct representations
- Sequential-move games
- Extensive-form representation
- Solution concepts
- Repeated games
- Stackelberg games

Stackelberg Games

- One player (the "leader") moves first, and the other player (the "follower") moves after
- Can be generalized to multiple leaders/followers
- Applications
- Public policy: a policymaker and other participants
- Security domain: a defender and an attacker
- Online marketplace: the marketplace and buyers/sellers

Stackelberg Equilibrium

- A two-player game: a leader l and a follower f, with corresponding sets of actions A_{l} and $\mathrm{A}_{f} . \mathrm{A}=A_{l} \times \mathrm{A}_{f}$
- Strategies: $x \in \Delta\left(A_{l}\right)$ and $\mathrm{y} \in \Delta\left(A_{f}\right)$
- Utility for a player $i \in\{l, f\}$:

$$
u_{i}(x, y)=\mathrm{E}_{a_{l} \sim x, a_{f} \sim y}\left[u_{i}\left(a_{l}, a_{f}\right)\right]
$$

- The leader knows ex ante that the follower observes its action

Stackelberg Equilibrium

- Given any leader strategy x, the follower chooses their strategy from the best-response set to strategy x

$$
B R(x)=\operatorname{argmax}_{y \in \Delta\left(A_{f}\right)} u_{f}(x, y)
$$

- Based on the best response assumption, the leader chooses their strategy x

$$
\max _{x \in \Delta\left(A_{l}\right)} u_{l}(x, y) \quad \text { s.t. } y \in B R(x)
$$

Stackelberg Equilibrium

- Given any leader strategy x, the follower chooses their strategy from the best-response set to strategy x

$$
B R(x)=\operatorname{argmax}_{y \in \Delta\left(A_{f}\right)} u_{f}(x, y)
$$

- Based on the best response assumption, the leader chooses their strategy x

$$
\max _{x \in \Delta\left(A_{l}\right)} u_{l}(x, y) \quad \text { s.t. } y \in B R(x)
$$

- Which $y \in B R(x)$ will the follower choose?

Stackelberg Equilibrium

- Strong Stackelberg equilibrium (SSE): the follower breaks ties in favor of the leader

$$
\max _{x \in \Delta\left(A_{l}\right), y \in B R(x)} u_{l}(x, y)
$$

- Weak Stackelberg equilibrium (WSE): the follower breaks ties adversarially to the leader

$$
\max _{x \in \Delta\left(A_{l}\right)} \min _{y \in \operatorname{BR}(x)} u_{l}(x, y)
$$

Stackelberg Equilibrium

- Strong Stackelberg equilibrium (SSE): the follower breaks ties in favor of the leader

$$
\max _{x \in \Delta\left(A_{l}\right), y \in B R(x)} u_{l}(x, y)
$$

- Weak Stackelberg equilibrium (WSE): the follower breaks ties adversarially to the leader

$$
\max _{x \in \Delta\left(A_{l}\right)} \min _{y \in \operatorname{BR}(x)} u_{l}(x, y)
$$

- Comparing to playing NE, will the leader benefit from firstly committing to a strategy?

Stackelberg Equilibrium

- Commit to pure actions $a_{l} \in A_{l}$?
- Commit to any $x \in \Delta\left(A_{l}\right)$?
- Theorem: In a general-sum game, the leader achieves weakly more utility in SSE than in any Nash equilibrium

Proof: Consider the NE (x, y) that yields the highest utility for the leader

Stackelberg Equilibrium

- Commit to pure actions $a_{l} \in A_{l}$?
- Commit to any $x \in \Delta\left(A_{l}\right)$?
- Theorem: In a general-sum game, the leader achieves weakly more utility in SSE than in any Nash equilibrium

Proof: Consider the NE (x, y) that yields the highest utility for the leader

- Theorem: In a general-sum game, the WSE provides the leader a utility at least as good as some Nash equilibrium

Logistics (Reminder)

- Pre-class CQs
- Due before each lecture
- Binary grading scheme
- Two chances to drop
- Paper presentations
- Bidding on papers
- Presentation guidelines
- Class survey for newly registered
- Office hour
- After class till 2 pm today
- 2-3pm for future weeks

