CS 598: Al Methods for Market Design

Lecture 11:Cryptoeconomics (Bitcoin)

Xintong Wang Spring 2024

Bitcoin Transactions

- Enable digital payments between untrusted parties... with no central authority (no banks or governments)
- A Bitcoin transaction includes
 - Sender(s)
 - Receiver(s)
 - Amount to transfer (in BTC)
 - A proof of ownership (pointer to last transaction with these coins)
 - Transaction fee

Bitcoin Transactions

- Enable digital payments between untrusted parties... with no central authority (no banks or governments)
- A Bitcoin transaction includes
 - Sender(s) Cryptographically signed by sender
 - Receiver(s)
 - Amount to transfer (in BTC)
 - A proof of ownership (pointer to last transaction with these coins)
 Transactions are authorized in *a*
 - Transaction fee

ledger and broadcasted (P2P network)

How Are Transactions Added to Ledger?

- Ledger: history of all transactions authorized that are grouped in "blocks"
- A block includes
 - Some transactions (~1000-2000)
 - A reference (hash) to the preceding block
 - A "nonce" (a bunch of bits)

The Blockchain

How / Who add new blocks to the blockchain? How to make sure that everyone agrees on the content?

- Incentivize *miners* to add blocks by monetary rewards (how BTCs gets *"minted"*) 6.25BTC currently
- Make it hard by solving a computationally difficult puzzle (*"proof of work"*)

Mining

- The process of finding new *valid* blocks
- The *intended* mining behavior includes:
 - Choose a subset of outstanding transactions (e.g., those with higher transaction fees)
 - Try to find a valid block by setting the bits in the nonce

• Append to the current last block of the blockchain

Mining

- The process of finding new *valid* blocks
- The *intended* mining behavior includes:
 - Choose a subset of outstanding transactions (e.g., those with higher transaction fees)
 - Try to find a valid block by setting the bits in the nonce

bits in nonce \rightarrow SHA-256 \rightarrow output (256 bits)

Solve the cryptographic hash function (a random function) s.t. the leading *l* bits are 0; *l* is set to control the rate l = 80: on average, succeed every 2^80 attempts

Append to the current last block of the blockchain

Forks

 Issue: Two different valid blocks are discovered at roughly the same time → a fork

Forks

 <u>Issue:</u> Two different valid blocks are discovered at roughly the same time → a fork

 <u>Specified behavior</u>: Interpret authorized transactions as those in the longest chain (break ties in favor of the block you heard the first)

Forks

 <u>Issue:</u> Two different valid blocks are discovered at roughly the same time → a fork

- <u>Specified behavior</u>: Interpret authorized transactions as those in the longest chain (break ties in favor of the block you heard the first)
- <u>Consequence</u>: Consider a transfer of funds as complete only after transactions added to blockchain and extended by several more blocks

Incentives: Forking Attacks

- Double-spend attack: deliberately create forks
 - Alice pays Bob in block b1
 - Block b2 is added after b1
 - Alice tries to orphan b1 and b2 by extending b0 with three blocks before anyone extends b2
- α : the fraction of computational power possessed
 - Alice's success probability: α^3 or α^{k+2} if Bob waits for k blocks to be added

Incentives: Forking Attacks

• 51% Attack: If $\alpha > 0.5$, the miner can act like a centralized authority (govern the longest chain)

Incentives: Selfish Mining

- Selfish mining: the behavior of *block withholding* (don't tell other miners about your eligible block)
- Strategy:
 - Alice finds eligible block s1
 - Alice tries to privately extend s1 with another block s2
 - If b4 is announced first, Alice needs to restart
 - If s2 is found first, Alice mines secret chain until her "lead" drops to 1

$b1 \leftarrow b2 \leftarrow b3 \leftarrow b4 \leftarrow b5$ $\leqslant s1 \leftarrow s2 \leftarrow s3$

Incentives: Selfish Mining

 Selfish mining: the behavior of *block withholding* (don't tell other miners about your eligible block)

 $\alpha > \frac{1}{3}$: selfish mining better than honest mining

• Alice finds eligible block s1

• Strategy:

- Alice tries to privately extend s1 with another block s2
- If b4 is announced first, Alice needs to restart
- If s2 is found first, Alice mines secret chain until her "lead" drops to 1

$b1 \leftarrow b2 \leftarrow b3 \leftarrow b4 \leftarrow b5$ $\leqslant s1 \leftarrow s2 \leftarrow s3$

(Eyal & Sirer, 2014)