CS 598: Al Methods for Market Design

 Lecture 11:Cryptoeconomics (Bitcoin)Xintong Wang
Spring 2024

Bitcoin Transactions

- Enable digital payments between untrusted parties... with no central authority (no banks or governments)
- A Bitcoin transaction includes
- Sender(s)
- Receiver(s)
- Amount to transfer (in BTC)
- A proof of ownership (pointer to last transaction with these coins)
- Transaction fee

Bitcoin Transactions

- Enable digital payments between untrusted parties... with no central authority (no banks or governments)
- A Bitcoin transaction includes
- Sender(s)

Cryptographically signed by sender

- Receiver(s)
- Amount to transfer (in BTC)
- A proof of ownership (pointer to last transaction with these coins)
- Transaction fee

Transactions are authorized in a ledger and broadcasted (P2P network)

How Are Transactions Added to Ledger?

- Ledger: history of all transactions authorized that are grouped in "blocks"
- A block includes
- Some transactions (~1000-2000)
- A reference (hash) to the preceding block
- A "nonce" (a bunch of bits)
- A blockchain

$$
\mathrm{b} 1<\mathrm{b} 2<\mathrm{b} 3
$$

The Blockchain

How / Who add new blocks to the blockchain? How to make sure that everyone agrees on the content?

- Incentivize miners to add blocks by monetary rewards (how BTCs gets "minted") 6.25BTC currently
- Make it hard by solving a computationally difficult puzzle ("proof of work")

$$
\mathrm{b} 1 \leftarrow \mathrm{~b} 2 \leqslant \mathrm{~b} 3
$$

Mining

- The process of finding new valid blocks
- The intended mining behavior includes:
- Choose a subset of outstanding transactions (e.g., those with higher transaction fees)
- Try to find a valid block by setting the bits in the nonce
- Append to the current last block of the blockchain

Mining

- The process of finding new valid blocks
- The intended mining behavior includes:
- Choose a subset of outstanding transactions (e.g., those with higher transaction fees)
- Try to find a valid block by setting the bits in the nonce bits in nonce \rightarrow SHA-256 \rightarrow output (256 bits)
Solve the cryptographic hash function (a random function) s.t. the leading l bits are $0 ; l$ is set to control the rate
$l=80$: on average, succeed every $2^{\wedge} 80$ attempts
- Append to the current last block of the blockchain

Forks

- Issue: Two different valid blocks are discovered at roughly the same time \rightarrow a fork

$$
\mathrm{b} 1 \leftarrow \mathrm{~b} 2 \underset{\mathrm{~K}}{\leftarrow} \mathrm{~b} 3 \leqslant \ldots \leftarrow \mathrm{~b} 4 \text { ("orphaned" no rewards) }
$$

Forks

- Issue: Two different valid blocks are discovered at roughly the same time \rightarrow a fork

$$
\begin{aligned}
\mathrm{b} 1 & \leftarrow \mathrm{~b} 2 \underset{\mathrm{~K}}{\leftarrow} \mathrm{~b} 3<(\text { ("orphaned" no rewards) }
\end{aligned}
$$

- Specified behavior: Interpret authorized transactions as those in the longest chain (break ties in favor of the block you heard the first)

Forks

- Issue: Two different valid blocks are discovered at roughly the same time \rightarrow a fork

$$
\mathrm{b} 1 \leftarrow \mathrm{~b} 2 \underset{\kappa}{\leftarrow} \text { b3 } \mathrm{b} 4 \text { ("orphaned" no rewards) }
$$

- Specified behavior: Interpret authorized transactions as those in the longest chain (break ties in favor of the block you heard the first)
- Consequence: Consider a transfer of funds as complete only after transactions added to blockchain and extended by several more blocks

Incentives: Forking Attacks

- Double-spend attack: deliberately create forks
- Alice pays Bob in block b1
- Block b2 is added after b1
- Alice tries to orphan b1 and b2 by extending b0 with three blocks before anyone extends b2
- α : the fraction of computational power possessed
- Alice's success probability: α^{3} or $\alpha^{\mathrm{k}+2}$ if Bob waits for k blocks to be added

$$
\begin{aligned}
& \mathrm{b} 0 \leftarrow \mathrm{~b} 1 \\
& \mathrm{~K} 1 \leftarrow \mathrm{~b} 2 \\
& \mathrm{~b} 3 \leftarrow \mathrm{~b} 4 \leftarrow \mathrm{~b} 5
\end{aligned}
$$

Incentives: Forking Attacks

- 51% Attack: If $\alpha>0.5$, the miner can act like a centralized authority (govern the longest chain)

Incentives: Selfish Mining

- Selfish mining: the behavior of block withholding (don't tell other miners about your eligible block)
- Strategy:
- Alice finds eligible block s1
- Alice tries to privately extend s1 with another block s2
- If b4 is announced first, Alice needs to restart
- If s2 is found first, Alice mines secret chain until her "lead" drops to 1

$$
\begin{gathered}
\mathrm{b} 1 \leftarrow \mathrm{~b} 2 \underset{\mathrm{~K}}{\mathrm{~K}} \mathrm{~b} 3 \leftarrow \mathrm{~b} 4 \leftarrow \mathrm{~s} 2 \leftarrow \mathrm{~b} 5 \\
\hline
\end{gathered}
$$

Incentives: Selfish Mining

- Selfish mining: the behavior of block withholding (don't tell other miners about your eligible block)
- Strategy: $\alpha>\frac{1}{3}$: selfish mining better than honest mining
- Alice finds eligible block s1
(Eyal \& Sirer, 2014)
- Alice tries to privately extend s1 with another block s2
- If b4 is announced first, Alice needs to restart
- If s2 is found first, Alice mines secret chain until her "lead" drops to 1

$$
\mathrm{b} 1 \leftarrow \mathrm{~b} 2 \underset{\mathrm{~K}}{\leftarrow \mathrm{~b} 3<\mathrm{s} 1 \leftarrow \mathrm{~b} 2 \leftarrow \mathrm{~b} 2 \leftarrow \mathrm{~b} 5}
$$

