CS 598: Al Methods for Market Design

Lecture 10: Prediction Markets

Xintong Wang Spring 2024

Recap

Google

* * * * *

Me

★ ★ ★ ★ ★

vs

- Eliciting beliefs about something verifiable in the future
 - E.g., Will Trump be the 2024 presidential election winner?
 - Scoring rules & prediction markets
- Eliciting information without (easy) verification
 - E.g., Does a plumber do high quality work? Is a restaurant good for friend gatherings?
 - Scoring rules & peer prediction

How to crowdsource information to make reliable predictions?

Recap: Scoring Rules (How to Pay a Forecaster)

- Possible outcomes $O = \{o_0, \dots, o_{m-1}\}$, indexed by k
- An agent's true belief p
 - E.g., I believe it will rain tomorrow with probability 0.5
- An agent's *belief report* q
- A scoring rule pays $s(q, o_k)$ if the outcome is o_k
 - The payment is contingent on the outcome
- Expected payment

$$E_{o\sim p}[s(q, o)] = \sum_{k} p_k \cdot s(q, o_k)$$

Recap: Scoring Rules (How to Pay a Forecaster)

 A scoring rule is strictly proper if, for every belief p, the expected payment

$$E_{o\sim p}[s(q,o)] = \sum_{k} p_k \cdot s(q,o_k)$$

is *uniquely maximized* through truthful report (q=p)

Example 1: Linear Scoring Rule

- The weather for tomorrow is a random variable W
- The outcome space is {sun, rain}
- True belief p = Pr(W=rain)
- Reported belief q
- Linear scoring rule: $s_{linear}(q, o_k) = q_k$
 - If it rains, then pay q; if it is sunny, then pay 1-q
- What is the expected payment?

 $p^{*}q + (1-p)^{*}(1-q)$

- Suppose p=0.6. What is the best report? q=1
- Based on p, an agent will only report $q \in \{0, 1\}$

Example 2: Logarithmic Scoring Rule

- Logarithmic scoring rule $s_{log}(q, o_k) = \ln(q_k)$
- Expected payment under weather forecasting p*ln(q)+ (1-p)*ln(1-q)
- Verify optimality
 - First-order: $p/q+1/(q-1)-p/(q-1) = 0 \rightarrow q=p$
 - Second-order derivative is negative
- Logarithmic scoring rule is strictly proper

Prediction Market

- A market designed for information aggregation
- Agents can "bet on beliefs", by trading contracts whose payoffs associated with an observed outcome in the future

Goal: Produce a forecast based on information dispersed among agents from all sources

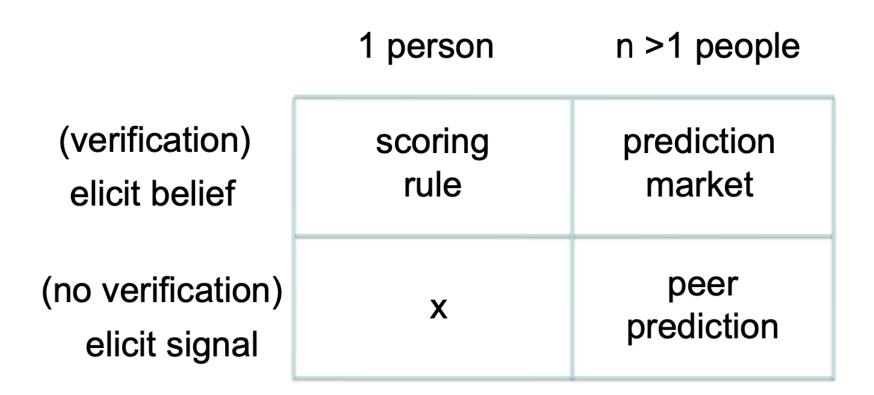
Construct a contract on an outcome (e.g., time of approval)

Q1, 2021 (or before)	1¢	
Q2, 2021	27¢	Pa
Q3, 2021	55¢	
Q4, 2021 (or later)	17¢	

Aggregate information via agents trading *contracts* written on event outcomes

Deveff	- \$1 if FDA approves
	 one in Q2, 2021 \$0 otherwise

Bet on beliefs (buy if price < \$p, and sell if price >\$p)



• Price represents aggregated belief, given dispersed information

Price of contract \approx Prob (event | all information)

Prediction Landscape

Other Prediction Methods vs. Prediction Market

Opinion Poll

- Sample with equally weighted inputs
- No incentive to be truthful
- Hard to be real-time

Ask Experts

- Hard to identify experts
- Hard to combine information

Machine Learning

- Need historical data, assuming past and future are related
- Hard to incorporate new information

Prediction Market

- Self-selection with bet-weighted inputs
- Monetary incentive
- No need for (assumptions on) data
- Real-time with new information immediately incorporated

Financial vs. Prediction Market

	Financial	Prediction
Primary Use	Capital allocation Hedge risk	Information aggregation
Secondary Use	Information aggregation	Hedge risk

Applications

- <u>PredictIt</u>, <u>Iowa Electronic Markets</u>
- Google, Ford, HP, etc.: user internal prediction markets for sales forecasts (software by firms, e.g., <u>CultivateLabs</u>)
- CMU Gates-Hillman prediction market
- <u>Hollywood Stock Exchange</u> (HSX)
- <u>Prosper</u>: blockchain-based prediction markets

Market Designs

- Design 1: continuous double auction (CDA)
 PredictIt, Iowa Electronic Market, HSX
- Design 2: automated market maker (AMM) using market scoring rule

CultivateLabs, Prosper (Ethereum smart contract), DeFi such as <u>Uniswap</u>

Some Desirable Properties

- Liquidity (can always trade *any* quantity)
- Information aggregation
- Real-time
- No "round-trip" *arbitrage* (profit at no risk)
- Bounded loss for the market designer

Continuous Double Auction (CDA)

• Limit order book

	Price	Shares	-	Price	Shares	_	Price	Shares	-	Price	Shares
						1					
10	100.12	4		100.12	4	1	100.12	4		100.12	4
Orders	100.10	15		100.10	15		100.10	15		100.10	15
Ö	100.04	20		100.04	20		100.04	20		100.04	20
Sell	100.03	8		100.03	8		100.03	8		100.03	8
S			-			-			-		
Orders	100.01	3		100.01	3	R I	100.00	2		99.99	11
Ö	99.99	11		100.00	2		99.99	11	[99.98	18
Buy	99.98	18		99.99	11		99.98	18		99.95	20
	99.95	20		99.98	18		99.95	20		99.91	34
				Suł	bmit		ı Suł	bmit	<u> </u>	Ca	ancel
			"B	uy 2 share	es @ \$100.	.00″ " <mark>S</mark> €	3 share ااد	es @ \$100.	01" "B	uy 2 shar	es @ \$100.00

Continuous Double Auction (CDA)

• CDAs are real-time, but can have low liquidity

Will 2019 be a warmer year than 2009?					-
Contract	Bid	Ask	Last	Vol	Chge
Global Average Temperature for 2019 to be M □ Trade → M □ Trade	30.0	-	95.0	1	0
Will 2019 be 0.2 degrees celsius warmer than 2009?					-
Contract	Bio	Ask	Last	Vol	Chge

(Das)

Call Market

 Buy orders (over T) 	 Sell orders (over T)
0.15	0.08
0.12	0.11
0.09	0.13
0.05	0.17
	0.30

Orders are batched together and matched at predetermined time intervals

Somewhat solve thin market problem, but not real-time

Call Market

 Buy orders (over T) 	 Sell orders (over T) 			
0.15	0.08	Two trades with		
0.12	0.11	price in [0.11, 0.12]		
0.09	0.13			
0.05	0.17			
	0.30			

Orders are batched together and matched at predetermined time intervals

Somewhat solve thin market problem, but not real-time

Automated Market Maker (AMM)

- Quote prices and offer to trade any quantity
- Goal: improve liquidity, and thus information aggregation

Automated Market Maker (AMM)

- Quote prices and offer to trade any quantity
- Goal: improve liquidity, and thus information aggregation
- Will Rutgers appear in NCAA tournament 2025? Market State: *x*

	Yes	No
	0	0
Buy 2 for Yes	2	0
Buy 5 for Yes	7	0
Buy 2 for No	7	2
Sell 1 for Yes	6	2

How to charge these trades?

Some Desirable Properties (AMM)

- No "round-trip" arbitrage
- Prices nonnegative, sum to one (i.e., =probability)
- Responsiveness (i.e., if buy then price increases; if sell then price decreases)
- Liquidity (i.e., relatively small price change after a small trade)
- Myopic incentives (i.e., trade until price=belief)
- Bounded loss to the market maker

• Cost function (convex, strictly increasing): C(x)

Example:
$$C(x) = \beta \ln \left(\sum_{j=0}^{m-1} e^{x_j/\beta} \right)$$

• Will Rutgers appear in NCAA tournament 2025?

Example:
$$C(x_0, x_1) = \beta \ln(e^{\frac{x_0}{\beta}} + e^{\frac{x_1}{\beta}})$$

Market State: x

	Yes	No
	0	0
Buy 2 for Yes	2	0
Buy 5 for Yes	7	0
Buy 2 for No	7	2
Sell 1 for Yes	6	2

Trader pays C(2, 0) - C(0, 0) Trader pays C(7, 0) - C(2, 0) Trader pays C(7, 2) - C(7, 0) Trader pays C(6, 2) - C(7, 2)

← Negative

• Cost function (convex, strictly increasing): C(x)

Example:
$$C(x) = \beta \ln \left(\sum_{j=0}^{m-1} e^{x_j/\beta} \right)$$

• Will Rutgers appear in NCAA tournament 2025?

Example:
$$C(x_0, x_1) = \beta \ln(e^{\frac{x_0}{\beta}} + e^{\frac{x_1}{\beta}})$$

Market State: x

	Yes	No
	0	0
Buy 2 for Yes	2	0
Buy 5 for Yes	7	0
Buy 2 for No	7	2
Sell 1 for Yes	6	2

No round-trip arbitrage! AMM gets $C(x^{(T)}) - C(x^{(0)})$ & pays \$1 to winners!

Trader pays C(2, 0) - C(0, 0) Trader pays C(7, 0) - C(2, 0) Trader pays C(7, 2) - C(7, 0)

Trader pays C(6, 2) - C(7, 2)

← Negative 26

- Analyze the cost function: $C(x_0, x_1) = \beta \ln(e^{\frac{x_0}{\beta}} + e^{\frac{x_1}{\beta}})$
- Price for an infinitesimal amount: $\pi_k(x) = \frac{\partial}{\partial x_k} C(x)$ Price for "YES": $\pi_0(x) = \frac{e^{x_0/\beta}}{e^{x_0/\beta} + e^{x_1/\beta}}$

• Price for "NO":
$$\pi_1(x) = \frac{e^{x_1/\beta}}{e^{x_0/\beta} + e^{x_1/\beta}}$$

Does this look familiar?

Some Desirable Properties (AMM)

- No "round-trip" arbitrage
- Prices nonnegative, sum to one (i.e., =probability)
- Responsiveness (i.e., if buy then price increases; if sell then price decreases)
- Liquidity (i.e., relatively small price change after a small trade) More liquid as beta is larger
 - Myopic incentives (i.e., trade until price=belief)
 - Bounded loss to the market maker

- Myopic incentives: optimal for an agent to trade until instantaneous price $\pi = p$ (agent belief)
- Connect to sequential logarithmic scoring rule
 - Initialize the market: $q^{(0)}$ is uniform
 - Sequence of reports: $q^{(0)}$, $q^{(1)}$, ..., $q^{(n)}$
 - Upon realization of o_k , the *ith agent* pays $s(q^{(i-1)}, o_k) s(q^{(i)}, o_k)$
 - Take *s* to be log scoring rule, i.e., $s_{log}(q, o_k) = \beta \ln(q_k)$. Is it rational to report truthfully in position *i*?

- Myopic incentives: optimal for an agent to trade until instantaneous price $\pi = p$ (agent belief)
- Connect to sequential logarithmic scoring rule
 - Initialize the market: $q^{(0)}$ is uniform
 - Sequence of reports: $q^{(0)}$, $q^{(1)}$, ..., $q^{(n)}$
 - Upon realization of o_k , the *ith agent* pays $s(q^{(i-1)}, o_k) s(q^{(i)}, o_k)$
 - Take s to be log scoring rule, i.e., $s_{log}(q, o_k) = \beta \ln(q_k)$. Is it rational to report truthfully in position i? YES!

- Myopic incentives: optimal for an agent to trade until instantaneous price $\pi = p$ (agent belief)
- Connect to sequential logarithmic scoring rule
 - Initialize the market: $q^{(0)}$ is uniform
 - Sequence of reports: $q^{(0)}$, $q^{(1)}$, ..., $q^{(n)}$
 - Upon realization of o_k , the *ith agent* pays $s(q^{(i-1)}, o_k) s(q^{(i)}, o_k)$
 - Take s to be log scoring rule, i.e., $s_{log}(q, o_k) = \beta \ln(q_k)$. Is it rational to report truthfully in position i? YES!
 - The worst-case total cost = $s(q^{(n)}, o_k) s(q^{(0)}, o_k)$ $\leq \beta \ln(1) - \beta \ln(1/m) = \beta \ln(m)_{s_1}$

Some Desirable Properties (AMM)

- No "round-trip" arbitrage
- Prices nonnegative, sum to one (i.e., =probability)
- Responsiveness (i.e., if buy then price increases; if sell then price decreases)
- Liquidity (i.e., relatively small price change after a small trade) More liquid as beta is larger
- Myopic incentives (i.e., trade until price=belief)
- Bounded loss to the market maker

• Will Rutgers appear in NCAA tournament 2025? $\beta = 1, C(x) = \ln(e^{x_0} + e^{x_1}), s_{log}(q, o_k) = \ln(q_k)$

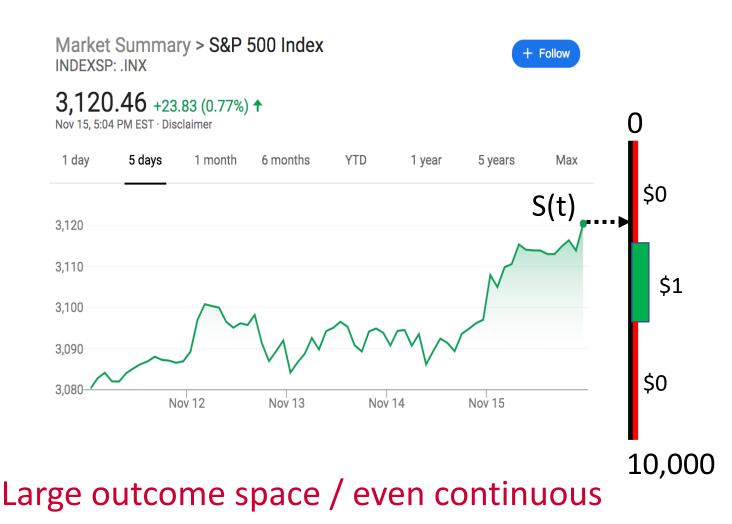
	Yes	No	Payment	$\pi(Yes)$	$\pi(No)$	Payment Yes	Payment No
	0	0	—	0.5	0.5	—	
Buy 1 for Yes	1	0	0.62 $\ln(e^1 + e^0)$ $-\ln(e^0 + e^0)$	0.73 $e^1/(e^1 + e^0)$	0.27	<i>-0.38</i> ln(0.5)- ln(0.73)	0.62 ln(0.5)- ln(0.27)
Buy 2 for Yes	3	0	1.73 $\ln(e^3 + e^0)$ $-\ln(e^1 + e^0)$	$0.95 e^3/(e^3 + e^0)$	0.05	-0.26 ln(0.73)- ln(0.95)	1.73 ln(0.27)- ln(0.05)
Buy 1 for No	3	1	0.08 $\ln(e^3 + e^1)$ $-\ln(e^3 + e^0)$	0.88 $e^3/(e^3 + e^1)$	0.12	0.08 ln(0.95)- ln(0.88)	-0.92 ln(0.05)- ln(0.12)

Summary: Scoring-Rule based AMM

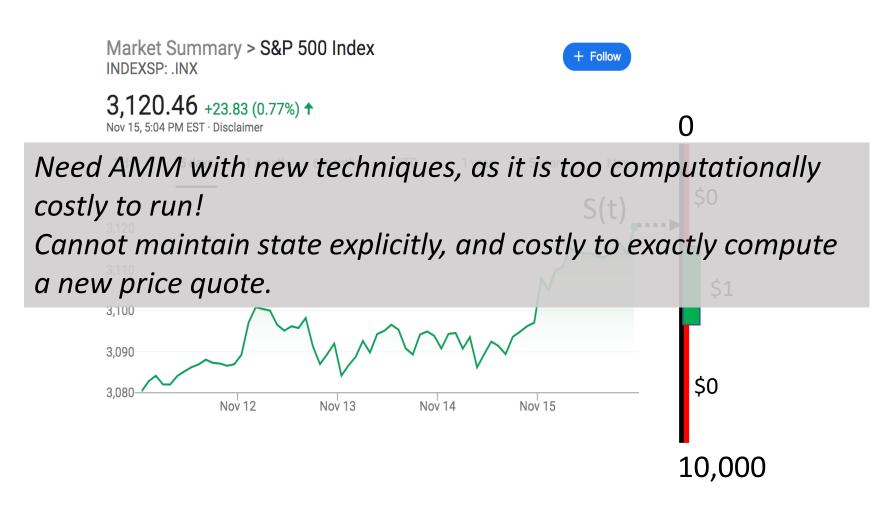
Cost-function-based AMM, with cost function

$$C(x) = \beta \ln \left(\sum_{j=0}^{m-1} e^{x_j/\beta} \right)$$

Logarithmic market scoring rule (LMSR) AMM


- Satisfy all desirable properties!
- Used by CultivateLabs, Prosper, ...

How about these scenarios?


 Payoff is function of common variables, e.g. 50 states elect <u>Dem or Rep</u>

How about these scenarios?

How about these scenarios?

Announcements

- HW2 will be out soon
- Office hours are extended (starting next week) to welcome more project discussions