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Prediction Markets for Interval Securities

• Prediction Markets 
§ Offer securities whose payoff is tied to outcomes of an event.
E.g., “the daily commercial air traffic will rise back above 100,000 flights before July 2022”.
§ Traders buy the security for some price, e.g., $0.32 per share.
§ One receives $1 if true and $0 if false.

§ Market price reflects a consensus forecast for the event.
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Prediction Markets for Interval Securities

• Interval Securities: the outcome will fall into some specified interval.
§ A natural way to elicit prediction about a continuous outcome.



Current Market Implementation

• Require predefined discretization.
• Treat as independent markets.



Current Market Implementation

• Require predefined discretization.
• Treat as independent markets.

Why not use finer discretization?
Challenge: the thin market problem.



Market Implementation: Automated Market Maker

• Set prices and offer to buy or sell any
interval security at some price.
• If more shares are bought, increase the 

price of securities on the outcome.
→ reflect a consensus forecast.
• Subsidize the market for information.
• Challenge: market operations require 

time linear in the number of outcomes.
E.g.,quarter (2 bits of precision): runtime 2!.

week (6 bits of precision): runtime 2".
day (9 bits of precision): runtime 2#.
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Contribution Summary
The largest amount that the MM 
has to pay traders across all possible 
trading sequences and outcomes.

Market Maker (MM) Data 
Structure

Runtime of Market 
Operations

Worst-Case 
Loss for MM

Logarithmic market scoring 
rule (LMSR) [Hanson 2003]

array 𝑂 𝑁
N = # distinct outcomes

log(𝑁)

Log-time LMSR MM binary tree 
(adaptive)

𝑂 log n ≤ 𝑂(log𝑁)
𝑛 = # distinct queries

log(𝑁)

Multi-resolution linearly 
constrained MM (LCMM)

binary tree 
(static)

𝑂 log 𝑁
N = # distinct outcomes

constant
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work
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LMSR Market Maker - Intuition



LMSR Market Maker - Intuition

• price(𝐼)
§ Keep track of price for each outcome 𝜔 ∈ Ω.
§ Sum up the prices of all outcomes in the interval, i.e., price(𝐼) = ∑!∈# price(𝜔).

• buy(𝐼, s)
§ Increase the prices of outcomes 𝜔 ∈ 𝐼 by a factor of 𝑒$/&.
§ Renormalize across all prices: prices of bought outcomes↑, prices of others↓.

• Challenge: price(𝐼) and buy(𝐼, 𝑠) take time linear in the number of outcomes.

Liquidity parameter set 
by the market designer.

…
0 11/N (N-1)/N2/N 3/N …

Outcome Space Ω



Contribution: Log-time LMSR Market Maker

• A balanced binary tree
§ Construct nodes from queried intervals.
§ Decompose LMSR computations along the 

tree nodes.
§ Keep track of unnormalized prices (in each 

node) and partial sums (in parent nodes).
• price(𝐼), e.g., 𝐼 = [.25, 1)

§ Sum up the prices of relevant subintervals 
(at most log 𝑛) along the search path.

§ Normalize by the overall sum (in the root).

S0

S2 S1 

S4S3

10 .4.25



Contribution: Log-time LMSR Market Maker

• buy(𝐼, s)
§ Update the corresponding multipliers of 

subintervals by 𝑒$/& along the search path.
§ Update the partial sums back up.
§ Challenge: the tree may no longer be 

balanced!
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Contribution: Log-time LMSR Market Maker

• buy(𝐼, s)
§ Update the corresponding multipliers of 

subintervals by 𝑒$/& along the search path.
§ Update the partial sums back up.
§ Challenge: the tree may no longer be 

balanced!
§ Rely on rotation to rebalance which 

requires constant time.
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Contribution: Log-time LMSR Market Maker

• Challenge: worst-case loss is dependent on the number of outcomes.

Market Maker (MM) Data 
Structure

Runtime of Market 
Operations

Worst-Case 
Loss for MM

Logarithmic market scoring 
rule (LMSR) [Hanson 2003]

array 𝑂 𝑁
N = # distinct outcomes

log(𝑁)

Log-time LMSR MM binary tree 
(adaptive)

𝑂 log n ≤ 𝑂(log𝑁)
𝑛 = # distinct queries

log(𝑁)
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Contribution: Multi-resolution Linearly Constrained 
Market Maker

• Use multiple LMSRs with different liquidity 
parameters to mediate markets offering 
interval securities at different resolutions.
• The liquidity parameter controls

§ How fast the price moves, i.e., e$/&;
§ The worst-case loss for MM, i.e., 𝑏 log𝑁.

• Achieve constant loss bound by choosing 
proper liquidity values.
§ Total worst-case loss: 
∑!"#$ 𝑏! log𝑁! = ∑!"#$ 𝑏! log 2! .
§ E.g., 𝑏! = 𝑂(𝑘%&.(#).
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Contribution: Multi-resolution Linearly Constrained 
Market Maker

• Challenge: keep prices coherent across 
different markets.
• buy(𝐼, s)

§ Example: buy(𝐼=[0,.125),	1)	in M3

→ price incoherence between M3 and       
other markets.
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Contribution: Multi-resolution Linearly Constrained 
Market Maker

• The LCMM can remove price 
incoherence (arbitrage) efficiently 
across markets. M1 
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Intuition: split the 1 share among 
M3 … Mk according to liquidity 
ratio to maintain price coherence. 
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Intuition: remove arbitrage level by 
level (e.g., buy s’ share [0,.5) in M1 and 
split sell s’ share among M2 … Mk ). 



Contribution: Multi-resolution Linearly Constrained 
Market Maker

• The LCMM can remove price 
incoherence (arbitrage) efficiently 
across markets.
• A single static binary tree

§ Keep track of (1) trader purchases 
and (2) automatic purchases made by 
the LCMM for price coherent.
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Contribution: Multi-resolution Linearly Constrained 
Market Maker
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Log-time LMSR vs. Multi-resolution LCMM

• Simulate trading in prediction markets where the MM has a fixed budget.
• Evaluate how fast prices converge to reach “consensus”.
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Log-time LMSR vs. Multi-resolution LCMM

• Compare to LCMM that equally splits the budget to two resolutions.
• LCMM achieves the best of both worlds:

elicit forecasts at the finer level & obtain a fast convergence at the coarser level.

0 200 400 600 800 1000
1uP Rf trades

0.00

0.05

0.10

0.15

0.20

Pr
Lc
e 
cR
nv
er
ge
nc
e 
er
rR
r

/065k 4
/065k 8
/C0050/50

0 200 400 600 800 1000
1uP Rf trades

0.00

0.05

0.10

0.15

0.20

Pr
Lc
e 
cR
nv
er
ge
nc
e 
er
rR
r

/065k 4
/065k 8
/C0050/50

LCMM

Outcome at 4 bits Outcome at 8 bits

LCMM



Recap & Summary

Thank you!
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