Log-time Prediction Markets for Interval Securities

Xintong Wang *Postdoc@Harvard* EC Mentoring Workshop, Talk Dissection, July 2022

Miro Dudík Microsoft Research, NYC Dave Pennock Rutgers University David Rothschild Microsoft Research, NYC

Prediction Markets for Interval Securities

• Prediction Markets

- Offer securities whose payoff is tied to outcomes of an event.
- E.g., "the daily commercial air traffic will rise back above 100,000 flights before July 2022".
- Traders buy the security for some price, e.g., \$0.32 per share.
- One receives \$1 if true and \$0 if false.

Prediction Markets for Interval Securities

• Prediction Markets

- Offer securities whose payoff is tied to outcomes of an event.
- E.g., "the daily commercial air traffic will rise back above 100,000 flights before July 2022".
- Traders buy the security for some price, e.g., \$0.32 per share.
- One receives \$1 if true and \$0 if false.

Market price reflects a consensus forecast for the event.

Prediction Markets for Interval Securities

- Interval Securities: the outcome will fall into some specified interval.
 - A natural way to elicit prediction about a continuous outcome.

						np post from noon Nov. 13 to 20?				
		Vhan will	worldwide	- T		ce	Best Offer			Best Offer
	240	ommercia	worldwide al air traffic	rise ba		NC	З¢	Buy Yes	Buy No	98¢
	a	bove 100	,000 flight	s per da	y? 130	NC	З¢	Buy Yes	Buy No	98¢
		21, 2021 (or befo	ore)							
	•	22, 2021				1¢♥	4¢	Buy Yes	Buy No	97¢
	0	3, 2021				1¢♠	10¢	Buy Yes	Buy No	92¢
		24, 2021								
When will the FDA ap		laybe later				1¢♠	12¢	Buy Yes	Buy No	90¢
COVID-19 vaccine?	80					2¢♠	13¢	Buy Yes	Buy No	89¢
In 2020	60 40	ma	mM	M	ma	1¢♠	15¢	Buy Yes	Buy No	86¢
Q1, 2021	20	And	support	The	My	4¢♠	18¢	Buy Yes	Buy No	83¢
Maybe later		Dec	Jan	Feb	Mar		001			<i>C</i> 1 +
		2020	2021	reb	War	10¢ ♦	39¢	Buy Yes	Buy No	64¢

Current Market Implementation

- Require predefined discretization.
- Treat as independent markets.

Current Market Implementation

- Require predefined discretization.
- Treat as independent markets.

Why not use finer discretization? Challenge: the thin market problem.

Market Implementation: Automated Market Maker

- Set prices and offer to buy or sell *any* interval security at some price.
- If more shares are bought, increase the price of securities on the outcome.
 → reflect a consensus forecast.
- Subsidize the market for information.

Market Implementation: Automated Market Maker

- Set prices and offer to buy or sell *any* interval security at some price.
- If more shares are bought, increase the price of securities on the outcome.
 → reflect a consensus forecast.
- Subsidize the market for information.
- Challenge: market operations require time linear in the number of outcomes.
 - *E.g.*, quarter (2 bits of precision): runtime 2^2 . week (6 bits of precision): runtime 2^6 . day (9 bits of precision): runtime 2^9 .

Contribution Summary

The largest amount that the MM has to pay traders across all possible trading sequences and outcomes.

	Market Maker (MM)			Worst-Case Loss for MM
previous work	Logarithmic market scoring rule (LMSR) [Hanson 2003]	array	O(N) N = # distinct outcomes	$\log(N)$

Contribution Summary

The largest amount that the MM has to pay traders across all possible trading sequences and outcomes.

	Market Maker (MM)	Data Structure	Runtime of Market Operations	Worst-Case Loss for MM
previous work	Logarithmic market scoring rule (LMSR) [Hanson 2003]	array	O(N) N = # distinct outcomes	$\log(N)$
this work	Log-time LMSR MM			
	Multi-resolution linearly constrained MM (LCMM)			

LMSR Market Maker - Intuition

LMSR Market Maker - Intuition

- price(1)
 - Keep track of price for each outcome $\omega \in \Omega$.
 - Sum up the prices of all outcomes in the interval, i.e., $price(I) = \sum_{\omega \in I} price(\omega)$.

Liquidity parameter set

- **buy**(*I*, s)
 - Increase the prices of outcomes $\omega \in I$ by a factor of $e^{s/b}$. by the market designer.
 - Renormalize across all prices: prices of bought outcomes ↑, prices of others ↓.
- Challenge: price(I) and buy(I, s) take time linear in the number of outcomes.

- A balanced binary tree
 - Construct nodes from queried intervals.
 - Decompose LMSR computations along the tree nodes.
 - Keep track of unnormalized prices (in each node) and partial sums (in parent nodes).
- *price*(*I*), e.g., *I* = [.25, 1)
 - Sum up the prices of relevant subintervals (at most log n) along the search path.
 - Normalize by the overall sum (in the root).

• **buy**(*I*, s)

- Update the corresponding multipliers of subintervals by e^{s/b} along the search path.
- Update the partial sums back up.
- Challenge: the tree may no longer be balanced!

• **buy**(*I*, s)

- Update the corresponding multipliers of subintervals by e^{s/b} along the search path.
- Update the partial sums back up.
- Challenge: the tree may no longer be balanced!
- Rely on rotation to rebalance which requires constant time.

• **buy**(*I*, s)

- Update the corresponding multipliers of subintervals by e^{s/b} along the search path.
- Update the partial sums back up.
- Challenge: the tree may no longer be balanced!
- Rely on rotation to rebalance which requires constant time.

	Market Maker (MM)	Data Structure	Runtime of Market Operations	Worst-Case Loss for MM
previous work	Logarithmic market scoring rule (LMSR) [Hanson 2003]	array	O(N) N = # distinct outcomes	$\log(N)$
this work	Log-time LMSR MM	binary tree (adaptive)	$O(\log n) \le O(\log N)$ n = # distinct queries	$\log(N)$

• Challenge: worst-case loss is dependent on the number of outcomes.

- Use multiple LMSRs with different *liquidity parameters* to mediate markets offering interval securities at different resolutions.
- The liquidity parameter controls
 - How fast the price moves, i.e., e^{s/b};
 - The worst-case loss for MM, i.e., $b \log N$.
- Achieve constant loss bound by choosing proper liquidity values.
 - Total worst-case loss:

$$\sum_{k=1}^{K} \frac{b_k}{b_k} \log N_k = \sum_{k=1}^{K} \frac{b_k}{b_k} \log(2^k).$$

• E.g., $b_k = O(k^{-2.01}).$

- Challenge: keep prices coherent across different markets.
- **buy**(*I*, s)
 - Example: buy(I=[0,.125), 1) in M₃
 → price incoherence between M₃ and other markets.

• The LCMM can remove price incoherence (arbitrage) efficiently across markets.

Intuition: split the 1 share among $M_3...M_k$ according to liquidity ratio to maintain price coherence.

• The LCMM can remove price incoherence (arbitrage) efficiently across markets.

Intuition: remove arbitrage level by level

• The LCMM can remove price incoherence (arbitrage) efficiently across markets.

Intuition: remove arbitrage level by level (e.g., buy s' share [0,.5) in M_1 and split sell s' share among M_2 ... M_k).

- The LCMM can remove price incoherence (arbitrage) efficiently across markets.
- A single static binary tree
 - Keep track of (1) trader purchases and (2) automatic purchases made by the LCMM for price coherent.

	Market Maker (MM)	Data Structure	Runtime of Market Operations	Worst-Case Loss for MM
previous work	Logarithmic market scoring rule (LMSR) [Hanson 2003]	array	O(N) N = # distinct outcomes	$\log(N)$
this work	Log-time LMSR MM	binary tree (adaptive)	$O(\log n) \le O(\log N)$ n = # distinct queries	$\log(N)$
	Multi-resolution linearly constrained MM (LCMM)	binary tree (static)	O(log N) N = # distinct outcomes	constant

Log-time LMSR vs. Multi-resolution LCMM

- Simulate trading in prediction markets where the MM has a fixed budget.
- Evaluate how fast prices converge to reach "consensus".

Log-time LMSR vs. Multi-resolution LCMM

- Compare to LCMM that equally splits the budget to two resolutions.
- LCMM achieves the best of both worlds: elicit forecasts at the finer level & obtain a fast convergence at the coarser level.

Recap & Summary

	Market Maker (MM)	Data Structure	Runtime of Market Operations	Worst-Case Loss for MM
previous work	Logarithmic market scoring rule (LMSR) [Hanson 2003]	array	O(N) N = # distinct outcomes	$\log(N)$
this work	Log-time LMSR MM	binary tree (adaptive)	$O(\log n) \le O(\log N)$ n = # distinct queries	$\log(N)$
	Multi-resolution linearly constrained MM (LCMM)	binary tree (static)	O(log N) N = # distinct outcomes	constant

Thank you!