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Prediction Markets for Interval Securities

* Prediction Markets
= Offer securities whose payoff is tied to outcomes of an event.
E.g., “the daily commercial air traffic will rise back above 100,000 flights before July 2022”.
= Traders buy the security for some price, e.g., 50.32 per share.
= One receives S1 if and SO if false.
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= Market price reflects a consensus forecast for the event.




Prediction Markets for Interval Securities

* Interval Securities: the outcome will fall into some specified interval.

= A natural way to elicit prediction about a continuous outcome.
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Current Market Implementation
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* Require predefined discretization. x .
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* Treat as independent markets. Nt T/
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Current Market Implementation

£

* Require predefined discretization. b o

* Treat as independent markets. Mt |, /
When will worldwide
commercial air traffic rise back
above 100,000 flights per day?

. Q1, 2021 (or before)

Why not use finer discretization? a2, 2021
@ a3, 2021
Challenge: the thin market problem. a4, 202

@ Maybe later




Market Implementation: Automated Market Maker

* Set prices and offer to buy or sell
interval security at some price.

* |f more shares are bought, increase the Market
price of securities on the outcome. Maker
— reflect a consensus forecast. A
. . . b I buy/sell
* Subsidize the market for information. uy/se/ \

abuy/sell ‘
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Market Implementation: Automated Market Maker

* Set prices and offer to buy or sell
interval security at some price.

* |f more shares are bought, increase the Market

price of securities on the outcome. Maker

— reflect a consensus forecast. A

. . . b I buy/sell

* Subsidize the market for information. uy/se/ \
* Challenge: market operations require buy/sell

time linear in the number of outcomes. 8 !

E.g.,quarter (2 bits of precision): runtime 22. O

week (6 bits of precision): runtime 2°.
day (9 bits of precision): runtime 2°.




Contribution Summary

The largest amount that the MM
has to pay traders across all possible
trading sequences and outcomes.

Market Maker (MM) Data Runtime of Market Worst-Case
Structure Operations Loss for MM

previous Logarithmic market scoring array O(N) log(N)
workryle (LMSR) [Hanson 2003] N = # distinct outcomes
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Log-time LMSR MM

this -

work . . .
Multi-resolution linearly

constrained MM (LCMM)
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L MISR Market Maker - Intuition




L MISR Market Maker - Intuition

 price(l)
= Keep track of price for each outcome w € ().
» Sum up the prices of all outcomes in the interval, i.e., price(I) = ), ¢; price(w).

¢ buy(I ) S) Liquidity parameter set
= Increase the prices of outcomes w € I by a factor of ¢S/~ Py the market designer.
= Renormalize across all prices: prices of bought outcomes |, prices of others<l .

* Challenge: price(l) and buy(l, s) take time linear in the number of outcomes.

0O 1/N 2/N 3/N (N-1)/N 1
Outcome Space ()



Contribution: Log-time LMSR Market Maker

* A balanced binary tree
= Construct nodes from queried intervals. ! ! ! !
= Decompose LMSR computations along the S0

tree nodes. —

= Keep track of unnormalized prices (in each S1 Sz
node) and partial sums (in parent nodes). S/\S4
3
 price(l),e.g., I =[.25,1)

= Sum up the prices of relevant subintervals
(at most log n) along the search path.

= Normalize by the overall sum (in the root).




Contribution: Log-time LMSR Market Maker

* buyll, ) 0 25 .4 1,
» Update the corresponding multipliers of ! o I
subintervals by e$/” along the search path. S0
= Update the partial sums back up. ,/\
® Challenge: the tree may no longer be S1 52
balanced! VAW
Sz | Sa
Ss| Se




Contribution: Log-time LMSR Market Maker

* buy(l,s)

0 25 .4 1,
= Update the corresponding multipliers of ! ! ! !
subintervals by e$/” along the search path. S0
= Update the partial sums back up. ,/\
® Challenge: the tree may no longer be S1 Sz
balanced! S{\S4
= Rely on rotation to rebalance which
requires constant time. a.[q.




Contribution: Log-time LMSR Market Maker

* buy(l,s)

0.1 25 .4 1,
* Update the corresponding multipliers of AL ! i
subintervals by e%/” along the search path. 9
= Update the partial sums back up. 5 p— )?
» Challenge: the tree may no longer be 2
balanced! /ﬁ\ —\
Ss| Se| Sa Seo

= Rely on rotation to rebalance which
requires constant time.




Contribution: Log-time LMSR Market Maker

Market Maker (MM) Data Runtime of Market Worst-Case
Structure Operations Loss for MM

previous Logarithmic market scoring array O(N) log(N)
workryle (LMSR) [Hanson 2003] N = # distinct outcomes
this  Log-time LMSR MM binarytree 0(logn) < O(logN) log(N)
work

(adaptive) n = # distinct queries

* Challenge: worst-case loss is dependent on the number of outcomes.




Contribution: Multi-resolution Linearly Constrained
Market Maker

* Use multiple LMSRs with different 0 25 5 25 1,
to mediate markets offering
interval securities at different resolutions. M
* The liquidity parameter controls M=
= How fast the price moves, i.e., es/ ;
* The worst-case loss for MM, i.e., b log N. M
* Achieve constant loss bound by choosing Ma

proper liquidity values.

= Total worst-case loss:
k=1 D log Ny = Yi—y log(Zk).

" Eg., b, =0(k™%%D),

Mx




Contribution: Multi-resolution Linearly Constrained
Market Maker

* Challenge: keep prices coherent across 0 25 2 75 1,
different markets.
M b1
* buy(l,s)
* Example: buy(I=[0,.125), 1) in Ms M- bz

—> price incoherence between Mz and

b
other markets. Mo °

M4 ba




Contribution: Multi-resolution Linearly Constrained
Market Maker

* The LCMM can remove price 0 25 2 25 L,
incoherence (arbitrage) efficiently b
across markets. { M !

Mz bz
Intuition: split the 1 share among - Ms Jek:
Ms... Mk according to liquidity b
ratio to maintain price coherence. - Ma 4




Contribution: Multi-resolution Linearly Constrained
Market Maker

* The LCMM can remove price 0 25 2 25 L,
incoherence (arbitrage) efficiently b
across markets. M !

— Mz bz

Intuition: remove arbitrage level by M bz
level —_

Ma b4




Contribution: Multi-resolution Linearly Constrained
Market Maker

* The LCMM can remove price 0 25 3 75 1,
incoherence (arbitrage) efficiently b
across markets. — Ma !

Mz bZ

Intuition: remove arbitrage level by J M- bz
level (e.g., buy s’ share [0,.5) in M1 and b

among Mz... Mx). Ma 4




Contribution: Multi-resolution Linearly Constrained
Market Maker

* The LCMM can remove price 0 25 2 25 L,
incoherence (arbitrage) efficiently
across markets. M D1
* A single static binary tree Mz bz
= Keep track of (1) trader purchases b
and (2) automatic purchases made by M °
the LCMM for price coherent. M ba




Contribution: Multi-resolution Linearly Constrained
Market Maker

Market Maker (MM) Data Runtime of Market Worst-Case
Structure Operations Loss for MM

previous Logarithmic market scoring array O(N) log(N)
work  ryle (LMSR) [Hanson 2003] N = # distinct outcomes
Log-time LMSR MM binary tree  O(logn) < O(log V) log(N)
this (adaptive) n = # distinct queries
work | Multi-resolution linearly binary tree  O(log N) constant
constrained MM (LCMM)  (static) N = # distinct outcomes

“—




Log-time LMSR vs. Multi-resolution LCMM

e Simulate trading in prediction markets where the MM has a fixed budget.

* Evaluate how fast prices converge to reach “consensus”.
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Log-time LMSR vs. Multi-resolution LCMM

 Compare to LCMM that equally splits the budget to two resolutions.

* LCMM achieves the best of both worlds:
elicit forecasts at the finer level & obtain a fast convergence at the coarser level.




Recap & Summary

Market Maker (MM) Data Runtime of Market Worst-Case
Structure Operations Loss for MM

previous Logarithmic market scoring array O(N) log(N)
work  ryle (LMSR) [Hanson 2003] N = # distinct outcomes
Log-time LMSR MM binarytree O(logn) < O(logN) log(N)
this (adaptive) n = # distinct queries
work | Multi-resolution linearly binary tree  O(log N) constant
constrained MM (LCMM)  (static) N = # distinct outcomes

“—

Thank you!




