
Log-time Prediction Markets
for Interval Securities
Xintong Wang Postdoc@Harvard
EC Mentoring Workshop, Talk Dissection, July 2022

Miro Dudík
Microsoft Research, NYC

Dave Pennock
Rutgers University

David Rothschild
Microsoft Research, NYC

Prediction Markets for Interval Securities

• Prediction Markets
§ Offer securities whose payoff is tied to outcomes of an event.
E.g., “the daily commercial air traffic will rise back above 100,000 flights before July 2022”.
§ Traders buy the security for some price, e.g., $0.32 per share.
§ One receives $1 if true and $0 if false.

§ Market price reflects a consensus forecast for the event.

Market

0.5

0.2

Buy

Sell

Prediction Markets for Interval Securities

• Prediction Markets
§ Offer securities whose payoff is tied to outcomes of an event.
E.g., “the daily commercial air traffic will rise back above 100,000 flights before July 2022”.
§ Traders buy the security for some price, e.g., $0.32 per share.
§ One receives $1 if true and $0 if false.

§ Market price reflects a consensus forecast for the event.

Market

0.5

0.2

Buy

Sell

Prediction Markets for Interval Securities

• Interval Securities: the outcome will fall into some specified interval.
§ A natural way to elicit prediction about a continuous outcome.

Current Market Implementation

• Require predefined discretization.
• Treat as independent markets.

Current Market Implementation

• Require predefined discretization.
• Treat as independent markets.

Why not use finer discretization?
Challenge: the thin market problem.

Market Implementation: Automated Market Maker

• Set prices and offer to buy or sell any
interval security at some price.
• If more shares are bought, increase the

price of securities on the outcome.
→ reflect a consensus forecast.
• Subsidize the market for information.
• Challenge: market operations require

time linear in the number of outcomes.
E.g.,quarter (2 bits of precision): runtime 2!.

week (6 bits of precision): runtime 2".
day (9 bits of precision): runtime 2#.

Market
Maker

buy/sell

buy/sell

buy/sell

Market Implementation: Automated Market Maker

• Set prices and offer to buy or sell any
interval security at some price.
• If more shares are bought, increase the

price of securities on the outcome.
→ reflect a consensus forecast.
• Subsidize the market for information.
• Challenge: market operations require

time linear in the number of outcomes.
E.g.,quarter (2 bits of precision): runtime 2!.

week (6 bits of precision): runtime 2".
day (9 bits of precision): runtime 2#.

Market
Maker

buy/sell

buy/sell

buy/sell

Contribution Summary
The largest amount that the MM
has to pay traders across all possible
trading sequences and outcomes.

Market Maker (MM) Data
Structure

Runtime of Market
Operations

Worst-Case
Loss for MM

Logarithmic market scoring
rule (LMSR) [Hanson 2003]

array 𝑂 𝑁
N = # distinct outcomes

log(𝑁)

Log-time LMSR MM binary tree
(adaptive)

𝑂 log n ≤ 𝑂(log𝑁)
𝑛 = # distinct queries

log(𝑁)

Multi-resolution linearly
constrained MM (LCMM)

binary tree
(static)

𝑂 log 𝑁
N = # distinct outcomes

constant

previous
work

this
work

Contribution Summary
The largest amount that the MM
has to pay traders across all possible
trading sequences and outcomes.

Market Maker (MM) Data
Structure

Runtime of Market
Operations

Worst-Case
Loss for MM

Logarithmic market scoring
rule (LMSR) [Hanson 2003]

array 𝑂 𝑁
N = # distinct outcomes

log(𝑁)

Log-time LMSR MM binary tree
(adaptive)

𝑂 log n ≤ 𝑂(log𝑁)
𝑛 = # distinct queries

log(𝑁)

Multi-resolution linearly
constrained MM (LCMM)

binary tree
(static)

𝑂 log 𝑁
N = # distinct outcomes

constant

previous
work

this
work

LMSR Market Maker - Intuition

LMSR Market Maker - Intuition

• price(𝐼)
§ Keep track of price for each outcome 𝜔 ∈ Ω.
§ Sum up the prices of all outcomes in the interval, i.e., price(𝐼) = ∑!∈# price(𝜔).

• buy(𝐼, s)
§ Increase the prices of outcomes 𝜔 ∈ 𝐼 by a factor of 𝑒$/&.
§ Renormalize across all prices: prices of bought outcomes↑, prices of others↓.

• Challenge: price(𝐼) and buy(𝐼, 𝑠) take time linear in the number of outcomes.

Liquidity parameter set
by the market designer.

…
0 11/N (N-1)/N2/N 3/N …

Outcome Space Ω

Contribution: Log-time LMSR Market Maker

• A balanced binary tree
§ Construct nodes from queried intervals.
§ Decompose LMSR computations along the

tree nodes.
§ Keep track of unnormalized prices (in each

node) and partial sums (in parent nodes).
• price(𝐼), e.g., 𝐼 = [.25, 1)

§ Sum up the prices of relevant subintervals
(at most log 𝑛) along the search path.

§ Normalize by the overall sum (in the root).

S0

S2 S1

S4S3

10 .4.25

Contribution: Log-time LMSR Market Maker

• buy(𝐼, s)
§ Update the corresponding multipliers of

subintervals by 𝑒$/& along the search path.
§ Update the partial sums back up.
§ Challenge: the tree may no longer be

balanced!

S0

S2 S1

S4S3

10 .4.25

S5 S6

Contribution: Log-time LMSR Market Maker

• buy(𝐼, s)
§ Update the corresponding multipliers of

subintervals by 𝑒$/& along the search path.
§ Update the partial sums back up.
§ Challenge: the tree may no longer be

balanced!
§ Rely on rotation to rebalance which

requires constant time.

S0

S2 S1

S4S3

10 .4.25

S5 S6

Contribution: Log-time LMSR Market Maker

• buy(𝐼, s)
§ Update the corresponding multipliers of

subintervals by 𝑒$/& along the search path.
§ Update the partial sums back up.
§ Challenge: the tree may no longer be

balanced!
§ Rely on rotation to rebalance which

requires constant time.

S0

S2 S4

S3

10 .4.25

S5 S6

Snew

.1

Contribution: Log-time LMSR Market Maker

• Challenge: worst-case loss is dependent on the number of outcomes.

Market Maker (MM) Data
Structure

Runtime of Market
Operations

Worst-Case
Loss for MM

Logarithmic market scoring
rule (LMSR) [Hanson 2003]

array 𝑂 𝑁
N = # distinct outcomes

log(𝑁)

Log-time LMSR MM binary tree
(adaptive)

𝑂 log n ≤ 𝑂(log𝑁)
𝑛 = # distinct queries

log(𝑁)

previous
work

this
work

Contribution: Multi-resolution Linearly Constrained
Market Maker

• Use multiple LMSRs with different liquidity
parameters to mediate markets offering
interval securities at different resolutions.
• The liquidity parameter controls

§ How fast the price moves, i.e., e$/&;
§ The worst-case loss for MM, i.e., 𝑏 log𝑁.

• Achieve constant loss bound by choosing
proper liquidity values.
§ Total worst-case loss:
∑!"#$ 𝑏! log𝑁! = ∑!"#$ 𝑏! log 2! .
§ E.g., 𝑏! = 𝑂(𝑘%&.(#).

M1

10 .5.25

b1

M2

M3

M4

b2

b3

b4

…

MK bK

.75

… …

Contribution: Multi-resolution Linearly Constrained
Market Maker

• Challenge: keep prices coherent across
different markets.
• buy(𝐼, s)

§ Example: buy(𝐼=[0,.125),	1)	in M3

→ price incoherence between M3 and
other markets.

M1

10 .5.25

b1

M2

M3

M4

b2

b3

b4

…

MK bK

.75

… …

Contribution: Multi-resolution Linearly Constrained
Market Maker

• The LCMM can remove price
incoherence (arbitrage) efficiently
across markets. M1

10 .5.25

b1

M2

M3

M4

b2

b3

b4

…

MK bK

.75

… …

Intuition: split the 1 share among
M3 … Mk according to liquidity
ratio to maintain price coherence.

Contribution: Multi-resolution Linearly Constrained
Market Maker

• The LCMM can remove price
incoherence (arbitrage) efficiently
across markets. M1

10 .5.25

b1

M2

M3

M4

b2

b3

b4

…

MK bK

.75

… …

Intuition: remove arbitrage level by
level (e.g., buy s share [0,.25) in M2

and split sell s share among M3 … Mk).

Contribution: Multi-resolution Linearly Constrained
Market Maker

• The LCMM can remove price
incoherence (arbitrage) efficiently
across markets. M1

10 .5.25

b1

M2

M3

M4

b2

b3

b4

…

MK bK

.75

… …

Intuition: remove arbitrage level by
level (e.g., buy s’ share [0,.5) in M1 and
split sell s’ share among M2 … Mk).

Contribution: Multi-resolution Linearly Constrained
Market Maker

• The LCMM can remove price
incoherence (arbitrage) efficiently
across markets.
• A single static binary tree

§ Keep track of (1) trader purchases
and (2) automatic purchases made by
the LCMM for price coherent.

M1

10 .5.25

b1

M2

M3

M4

b2

b3

b4

…

MK bK

.75

… …

Contribution: Multi-resolution Linearly Constrained
Market Maker

Market Maker (MM) Data
Structure

Runtime of Market
Operations

Worst-Case
Loss for MM

Logarithmic market scoring
rule (LMSR) [Hanson 2003]

array 𝑂 𝑁
N = # distinct outcomes

log(𝑁)

Log-time LMSR MM binary tree
(adaptive)

𝑂 log n ≤ 𝑂(log𝑁)
𝑛 = # distinct queries

log(𝑁)

Multi-resolution linearly
constrained MM (LCMM)

binary tree
(static)

𝑂 log 𝑁
N = # distinct outcomes

constant

previous
work

this
work

Log-time LMSR vs. Multi-resolution LCMM

• Simulate trading in prediction markets where the MM has a fixed budget.
• Evaluate how fast prices converge to reach “consensus”.

0 200 400 600 800 1000
1uP Rf trades

0.00

0.05

0.10

0.15

0.20

Pr
Lc
e
cR
nv
er
ge
nc
e
er
rR
r

L065k 4
L065k 8

LMSR for 4 bits

LMSR for 8 bits

Outcome at 4 bits

0 200 400 600 800 1000
1uP Rf trades

0.00

0.05

0.10

0.15

0.20

Pr
Lc
e
cR
nv
er
ge
nc
e
er
rR
r

L065k 4
L065k 8

Outcome at 8 bits

LMSR for 4 bits

LMSR for 8 bits

Log-time LMSR vs. Multi-resolution LCMM

• Compare to LCMM that equally splits the budget to two resolutions.
• LCMM achieves the best of both worlds:

elicit forecasts at the finer level & obtain a fast convergence at the coarser level.

0 200 400 600 800 1000
1uP Rf trades

0.00

0.05

0.10

0.15

0.20

Pr
Lc
e
cR
nv
er
ge
nc
e
er
rR
r

/065k 4
/065k 8
/C0050/50

0 200 400 600 800 1000
1uP Rf trades

0.00

0.05

0.10

0.15

0.20

Pr
Lc
e
cR
nv
er
ge
nc
e
er
rR
r

/065k 4
/065k 8
/C0050/50

LCMM

Outcome at 4 bits Outcome at 8 bits

LCMM

Recap & Summary

Thank you!

Market Maker (MM) Data
Structure

Runtime of Market
Operations

Worst-Case
Loss for MM

Logarithmic market scoring
rule (LMSR) [Hanson 2003]

array 𝑂 𝑁
N = # distinct outcomes

log(𝑁)

Log-time LMSR MM binary tree
(adaptive)

𝑂 log n ≤ 𝑂(log𝑁)
𝑛 = # distinct queries

log(𝑁)

Multi-resolution linearly
constrained MM (LCMM)

binary tree
(static)

𝑂 log 𝑁
N = # distinct outcomes

constant

previous
work

this
work

