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Financial Markets — An Algorithmic Ecosystem
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Market Share of Algorithmic Trading
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MARKETS

As ‘Spoof’ Trading Persists, Regulators Clamp Down

Bluffing Tactic That Dodd-Frank Banned in 2010 Can Distort Markets

Flash Crash Trader E-Mails Show
Spoofing Strategy, U.S. Says

by TomSchoenberg  SuziRing Janan Hanna
Tschoenberg22 journosooz

UBS Deutsche Bank and HSBC
\ to pay millions in spoofing
settlement, CFTC says

« Deutsche Bank will pay $30 million, UBS $15 million and HSBC $1.6 million to
settle civil charges that some of their traders engaged in spoofing in the
precious metals market.

1:03 PM EDT Updated on September 4, 2015 — 9:32 AM EDT f -~
-
US seals first prosecution against stock market trader for

'spoofing'
-

A jury convicts Michael Coscia on six charges of commodities fraud and six
charges of spoofing, all of the charges he faced

Spoofing is the practice of submitting large spurious buy or sell orders
'l with the intent to cancel them before execution to mislead other traders.

tra(&

crude futures on a London exchange from his sky
Over six hours, Igor Oystacher’s computer sent rc m M
including thousands of buy and sell orders, accor:
the exchange to his clearing firm reviewed by The

canceled many of those orders milliseconds after
show, in what the exchange alleges was part ofa t
trick other investors into buying and selling at ar

o leaves Westminster Magistrates' Court in London, on Fric
Ratcliffe/Bloomberg

Traders call the illegal bluffing tactic “spoofing,”: %

used to manipulate prices of anything from stock costing me, Sarao said to tell programmer

etails seen bolstering U.S. extradition case

Jeavs, lay trader accused of contributing to the 2010 flash crash e
i £ e g L o i r to help him work out a system to manipulate stock prices
Luke MacGregor | Reuters is “spoofing” efforts, U.S. prosecutors said in an indictmen ~ Prosecutors said Michael Coscia wanted to lure other traders to markets by creating an illusion of
demand so that he could make money on smaller trades F

“I need to know whether you can do what I need, because at the mome

spoofs all the time and it’s costing me a lot of money,” Navinder Singh By Reuters
2009 e-mail to a programmer he’d tapped to build trading software, ac 11:48PM GMT 03 Nov 2015

A US jury has found high-frequency trader Michael Coscia guilty of
commodities fraud and "spoofing" in the US government's first criminal
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Key Elements in Spoofing

* The intent to falsely signal supply and demand with spoof orders
* The effect of misleading other traders about the market condition

* The connection to adversarial attacks on machine learning algorithms
[ Inference-level attack on deployed trading algorithm
1 Poisoning attack on future algorithm training

To what extent are the other traders misled by the spoof orders?

What would happen if the spoof orders are not placed?



This Talk

Towards Manipulation-Resistant Markets

d A computational agent-based model
Strategic dynamics between a manipulator and market participants.

O Design of deterrent mechanisms and trading strategies (briefly)
Mitigating manipulation effects.

O An adversarial learning framework
Strategic dynamics between a manipulator and a regulator.
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Agent-Based Modeling & Empirical Game-Theoretic Analysis
p
Background Traders%

% A Spoofer ‘
\_

 Agent-Based Modeling (ABM)
- Simulate financial market as a complex multi-agent system;
- Lay out strategic choices faced by trading agents;
v' Reproduce manipulation effect through agent interactions.
 Empirical Game-Theoretic Analysis (EGTA)
- Induce a normal-form game and identify Nash equilibria;

v' Characterize agent interactions and market performance in equilibrium.



A Market Model of Spoofing

Fundamental Value . )
. * Continuous Double Auction

(CDA)
* Market Environments

[
2 ° ., % - Fundamental Shocks;
o Mime - Observation Noise;

Background Traders - {LS, MS, HS} X {LN, MN, HN};




A Market Model of Spoofing
Fundamental Value — % ----- I ------ \s/jlrl:j:ison

Interval

Non-Learning Agents [Gode & Sunder 1993, Wah & Wellman 2015]
 Choose a price based on its valuation and a requested surplus.

> Prob.
Time o 1 T :
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Learning Agents [Gjerstad & Dickhaut 1998, Wang & Wellman 2017]

* Learn from the limit order book in its memory to approximate the
probability of an order being transacted;

* Choose a price to maximize expected surplus.




A Market Model of Spoofing

Fundamental Value
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A Market Model of Spoofing
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What is the effect of spoofing on agent
behavior and market performance?

A Game-Theoretic Analysis



Stage 1: Is Learning from LOB Competitive?

In the absence of spoofing, how will agents choose between Learning

and Non-Learning?
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[In the absence of spoofing, Learning from LOB is a strategic choice. J




Stage 1: Is Learning from LOB Competitive?

In the absence of spoofing, how will agents choose between Learning
and Non-Learning?

Learning from LOB improves market efficiency and price discovery.



Stage 2: Is Spoofing Effective?

* Price Deviation: prices in market with spoofing — prices in market without spoofing
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Markets with learning traders are vulnerable to spoofing.
Spoofing causes learning surplus {, & non-learning surplus

\Learning tends to amplify spoofing effects.

[Transaction Price Differences
o




Stage 2: Is Spoofing Effective?

* Profitable Spoofing [
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Stage 2: Is Spoofing Effective?

* Exploitation I Buy at prices lower III Sell at prices higher
than a threshold uy or than the threshold
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Stage 3: What is the Effect of Spoofing?

In the presence of spoofing, how will agents adapt by re-equilibrating?
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[Spoofing decreases the proportion of Learning agents in equilibrium.]




Stage 3: What is the Effect of Spoofing?

In the presence of spoofing, how will agents adapt by re-equilibrating?

Spoofing harms market efficiency and price discovery.



Spoofing the Limit Order Book:
A Strategic Agent-Based Analysis

* Reproduce spoofing in a dynamic limit-order market mechanism.

* Demonstrate the effectiveness of spoofing against approximate-
equilibrium traders.

Spoofing distorts prices, decreases learning proportion, and hurts market surplus.

* Provide a model to quantify the effect of manipulation practices and
evaluate any deterrent proposal under strategic settings.



This Talk

Towards Manipulation-Resistant Markets

O Design of deterrent mechanisms and trading strategies (briefly)
Mitigating manipulation effects.



Two Variations of CDA Mechanisms

* “Cloaking” Mechanisms: strategically cloak price levels and disclose part of
the order book

- Mitigate manipulation effect
- Introduce transaction risk to the manipulator
- X. Wang, Y. Vorobeychik, M. P. Wellman. A Cloaking Mechanism to
Mitigate Market Manipulation. |JCAl 2018.
* Frequent Call Markets
- Reduce manipulation frequency and impact

- B. Liu, M. Polukarov, C. Ventre, L. Li, L. Kanthan, F. Wu, and M. Basios.
The Spoofing Resistance of Frequent Call Markets. AAMAS 2022.



Two Variations of Learning-Based Strategies

* Learning with order blocking * Learning with stochastic price
offset

1 1

Prow « Phigh ] Prow Phigh
Improve robustness against 'mprove general performance over
spoofing and remain competitive the baseline learning strategy;
in non-manipulated markets. combine with the first proposal to

gain robustness.



This Talk

Towards Manipulation-Resistant Markets

O An adversarial learning framework
Strategic dynamics between a manipulator and a regulator.



Detect Market Manipulation

* The ideal case: adopt supervised learning approaches
- Use order streams associated with a verified manipulator and normal traders;

- Represent an order stream as a variable-length sequence of bidding actions
(e.g., submit/cancel, buy/sell, price, and quantity)

PPPPP m\ — — N ﬁ
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Detect Market Manipulation: The Data Challenge

* Insufficient real-market labeled order streams to serve as training data
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Data: An order stream over a trading period
Label: A manipulator



Detect Market Manipulation: The Data Challenge

* An agent-based market model of spoofing
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Detect Market Manipulation: Challenges

Issue 1: The codified manipulation strategies may not be diverse
enough.

Issue 2: The manipulator may adversarially obfuscate actions to evade
detection, given a developed classifier.



Detect Market Manipulation

* An adversarial learning framework

Issue 1: The codified manipulation strategies may not be diverse
enough.

» Generate new manipulation patterns through adapting codified
spoofing strategies.

Issue 2: The manipulator may adversarially obfuscate actions to evade
detection, given a developed classifier.

» Reason about how an adversary might mask its behavior to evade
detection.



An Adversarial Learning Framework to Evade Detection

e A case study: modify spoofing to resemble market making.

- A market-making agent (MM) simultaneously submits buy and sell orders to
facilitate trading with other investors.
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An Adversarial Learning Framework to Evade Detection

* Adapt SP to evade detection while preserving manipulation effects
IMM I

Evade Detection

SP1

Preserve Manipulation Intent
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Simulator T




An Adversarial Learning Framework to Evade Detection

* Adapt SP to evade detection while preserving manipulation effects

* Manipulation intensity
the fraction of price deviation;
* Transaction risk

# transactions / # spoof arrivals

Y

Market
Simulator

3

Market
. —l
Simulator




An Adversarial Learning Framework to Evade Detection

* A recursive training procedure




Empirical Evaluation

 Similarity to market making;

* Preservation of manipulation effects.



Similarity to Market Making
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Quote simultaneously on both sides of the market;

Place large orders behind smaller ones.




Similarity to Market Making
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Transaction Risk
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Modeling the Evasion of Manipulation
Detection: An Adversarial Learning Framework

Modeling strategic dynamics between a manipulator and a regulator
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Discussions

Integrating model-driven and data-driven approaches

#1 Calibrate model and simulated data using real data

Real
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Discussions

Integrating model-driven and data-driven approaches
#2 Proactively reason about adversarial evasion

Normal
Activities

Observed Potential Market
. . . — .
Manipulation Adaptation Simulator




