

Proper Scoring Rules from Contracts to Markets

Xintong Wang¹, and Fang-Yi Yu²

¹Rutgers University, ²George Mason University

January 14, 2026

Outline

1. Proper Scoring Rules

- 1.1 Definition of proper scoring rule
- 1.2 Proper scoring rule = convex function
- 1.3 Proper scoring rule = decision problem

2. Generalized Scoring Rules

- 2.1 Property Elicitation—from forecast to property
- 2.2 Application: Peer Prediction
- 2.3 Surrogate scoring rule—from Outcome to Observation

3. Prediction Markets

- 3.1 What is a prediction market?
- 3.2 Connection to scoring rules: Cost-function-based automated market makers (AMMs)
- 3.3 Computational aspects of AMM designs
- 3.4 Economic aspects of AMM designs
- 3.5 Regulatory landscape and discussions

1. Proper Scoring Rules

- 1.1 Definition of proper scoring rule
- 1.2 Proper scoring rule = convex function
- 1.3 Proper scoring rule = decision problem

2. Generalized Scoring Rules

3. Prediction Markets

Elicit truthful reports

High quality information from the crowd

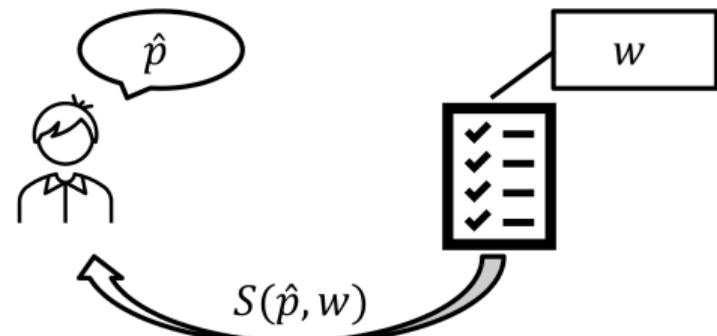
- Peer review at conferences
- Peer grading in classrooms
- Expert forecasting

- 1.** Strong Reject 5%
- 2.** Round 1 Reject 50%
- 3.** Probable Eventual Reject 65%
- 4.** Borderline (avoid using if possible) 70%
- 5.** Weak Accept 80 %
- 6.** Accept 90%
- 7.** Strong Accept 95%
- 8.** Top (Best Paper Nomination) 99%
- 9.** Very Top (Best Paper) 100%

Proper Scoring Rules: Binary

- Score an agent's forecast on a binary random variable on $\Omega = \{0, 1\}$
 - Agent reports a **forecast** $\hat{p} \in [0, 1]$
 - Principal and the agent observe the **outcome** $w \in \Omega$
 - Principal pays $S(\hat{p}, w)$ to the agent
- A scoring rule S is **proper** if for all \hat{p}

$$\mathbb{E}_{w \sim p}[S(p, w)] \geq \mathbb{E}_{w \sim p}[S(\hat{p}, w)]$$



Definition

A scoring rule S is **proper** if for all $\hat{\mathbf{p}} \in \Delta_\Omega$,

$$S(\mathbf{p}, \mathbf{p}) \geq S(\hat{\mathbf{p}}, \mathbf{p})$$

where $S(\hat{\mathbf{p}}, \mathbf{p}) := \mathbb{E}_{w \sim \mathbf{p}}[S(\hat{\mathbf{p}}, w)]$, and strictly proper if the inequality is strict for all $\hat{\mathbf{p}} \neq \mathbf{p}$.

Score a forecast on a r.v. on Ω

- Report a forecast $\hat{\mathbf{p}} \in \Delta_\Omega$
- Observe the realization $w \in \Omega$
- Pay $S(\hat{\mathbf{p}}, w)$

Proper Scoring Rules

Definition

A scoring rule S is **proper** if for all $\hat{\mathbf{p}} \in \Delta_\Omega$,

$$S(\mathbf{p}, \mathbf{p}) \geq S(\hat{\mathbf{p}}, \mathbf{p})$$

where $S(\hat{\mathbf{p}}, \mathbf{p}) := \mathbb{E}_{w \sim \mathbf{p}}[S(\hat{\mathbf{p}}, w)]$, and strictly proper if the inequality is strict for all $\hat{\mathbf{p}} \neq \mathbf{p}$.

Examples of Proper Scoring Rules

- Log scoring rule: $S(\hat{\mathbf{p}}, w) = \ln \hat{p}(w)$
- Quadratic scoring rule: $S(\hat{\mathbf{p}}, w) = 2\hat{p}(w) - \|\hat{\mathbf{p}}\|^2 - 1$
- v-shaped for binary $\Omega = \{0, 1\}$: $S(\hat{p}, w) = (1 - c)1[p > c, w = 1] + c1[\hat{p} \leq c, w = 0]$

1. Proper Scoring Rules

- 1.1 Definition of proper scoring rule
- 1.2 Proper scoring rule = convex function

Application: Optimal scoring rules [Hartline et al., 2020]

Application: Optimal scoring rules Partial Knowledge setting

- 1.3 Proper scoring rule = decision problem

2. Generalized Scoring Rules

3. Prediction Markets

What $S(\hat{\mathbf{p}}, w)$ are proper?

Theorem (Savage Representation)

The scoring rule S is (strictly) proper if and only if there exists a (strictly) convex function $G : \Delta_\Omega \rightarrow \mathbb{R}$ such that

$$S(\hat{\mathbf{p}}, w) = G(\hat{\mathbf{p}}) + \nabla G(\hat{\mathbf{p}}) \cdot (1_w - \hat{\mathbf{p}})$$

where ∇G is the (sub)gradient and 1_w is the distribution putting probability 1 on $w \in \Omega$.

Proper scoring rule = convex function

What $S(\hat{p}, w)$ are proper?

Theorem (Savage Representation)

The scoring rule S is (strictly) proper if and only if there exists a (strictly) convex function $G : \Delta_\Omega \rightarrow \mathbb{R}$ such that

$$S(\hat{\mathbf{p}}, w) = G(\hat{\mathbf{p}}) + \nabla G(\hat{\mathbf{p}}) \cdot (1_w - \hat{\mathbf{p}})$$

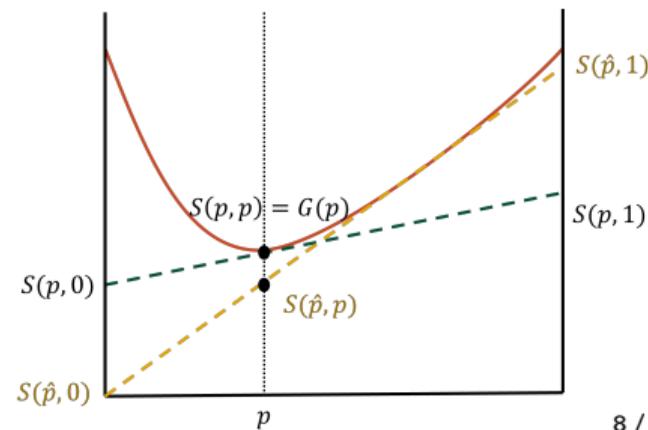
where ∇G is the (sub)gradient and 1_w is the distribution putting probability 1 on $w \in \Omega$.

[Proof of \Leftarrow]

$$\begin{aligned} S(\hat{\mathbf{p}}, \mathbf{p}) &= G(\hat{\mathbf{p}}) + \nabla G(\hat{\mathbf{p}}) \cdot (\mathbb{E}_{w \sim \mathbf{p}}[1_w] - \hat{\mathbf{p}}) \\ &= G(\hat{\mathbf{p}}) + \nabla G(\hat{\mathbf{p}}) \cdot (\mathbf{p} - \hat{\mathbf{p}}). \end{aligned}$$

Because G is convex,

$$G(\hat{\mathbf{p}}) + \nabla G(\hat{\mathbf{p}}) \cdot (\mathbf{p} - \hat{\mathbf{p}}) \leq G(\mathbf{p}) = S(\mathbf{p}, \mathbf{p}).$$



What $S(\hat{\mathbf{p}}, w)$ are proper?

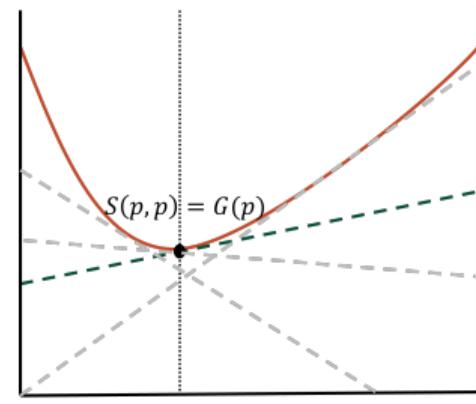
Theorem (Savage Representation)

The scoring rule S is (strictly) proper if and only if there exists a (strictly) convex function $G : \Delta_\Omega \rightarrow \mathbb{R}$ such that

$$S(\hat{\mathbf{p}}, w) = G(\hat{\mathbf{p}}) + \nabla G(\hat{\mathbf{p}}) \cdot (1_w - \hat{\mathbf{p}})$$

where ∇G is the (sub)gradient and 1_w is the distribution putting probability 1 on $w \in \Omega$.

[Proof of \Rightarrow] Let $G(\mathbf{p}) := S(\mathbf{p}, \mathbf{p})$. As $G(\mathbf{p}) = \max_{\hat{\mathbf{p}}} S(\hat{\mathbf{p}}, \mathbf{p})$, and $S(\hat{\mathbf{p}}, \mathbf{p})$ is affine in \mathbf{p} , $G(\mathbf{p})$ is convex. $S(\hat{\mathbf{p}}, \mathbf{p})$ is tangent to G at $\hat{\mathbf{p}}$, so $S(\hat{\mathbf{p}}, w) = G(\hat{\mathbf{p}}) + \nabla G(\hat{\mathbf{p}}) \cdot (1_w - \hat{\mathbf{p}})$ for some sub-gradient $\nabla G(\hat{\mathbf{p}})$.



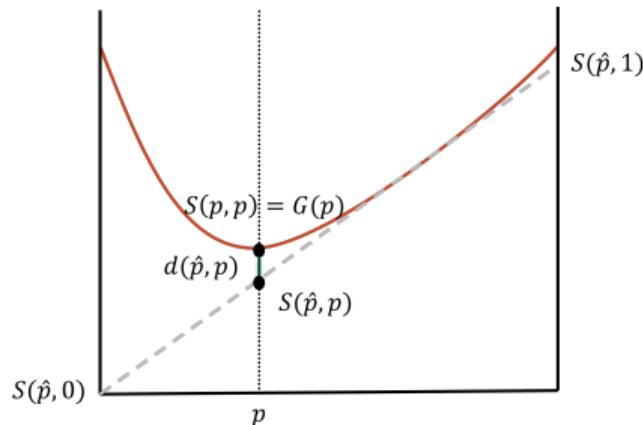
Given a proper scoring rule S ,

- **generalized entropy**

$$G(\mathbf{p}) := S(\mathbf{p}, \mathbf{p}) = \sup_{\hat{\mathbf{p}}} S(\hat{\mathbf{p}}, \mathbf{p}).$$

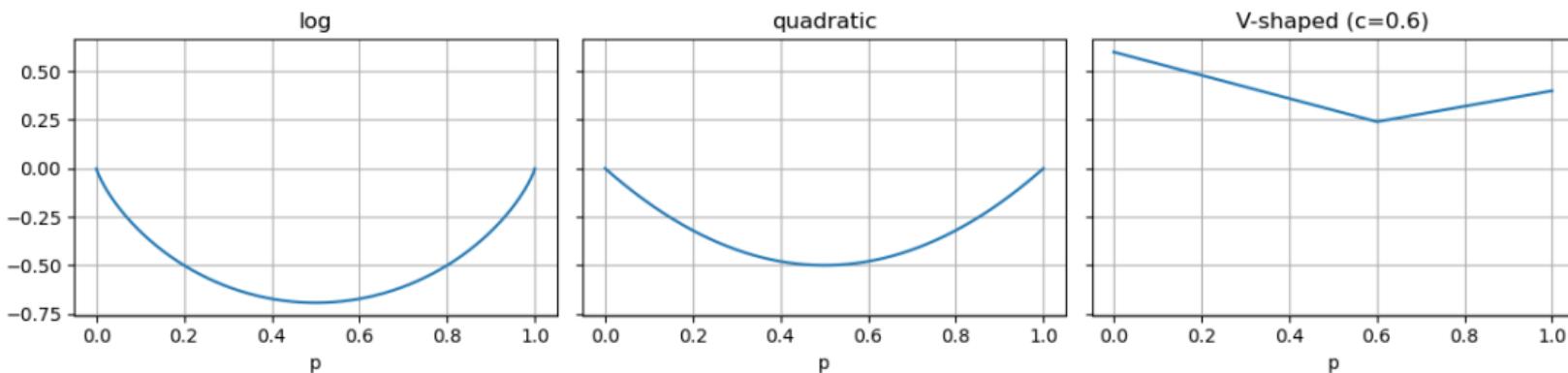
- **divergence** $d(\mathbf{q}, \mathbf{p}) := S(\mathbf{p}, \mathbf{p}) - S(\mathbf{q}, \mathbf{p})$

- If S is strictly proper, $d(\mathbf{q}, \mathbf{p}) > 0$ unless $\mathbf{q} = \mathbf{p}$.
- Generally not symmetric, $d(\mathbf{q}, \mathbf{p}) \neq d(\mathbf{p}, \mathbf{q})$.
- also known as *Bregman divergence* with G ,
since $d(\mathbf{q}, \mathbf{p}) = G(\mathbf{p}) - G(\mathbf{q}) - \nabla G(\mathbf{q})(\mathbf{p} - \mathbf{q})$.



Examples of Information Measures and Divergence

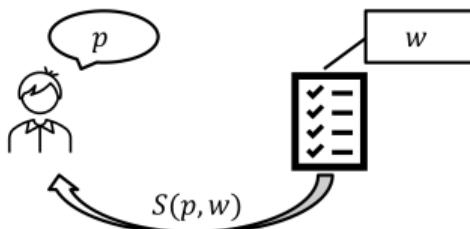
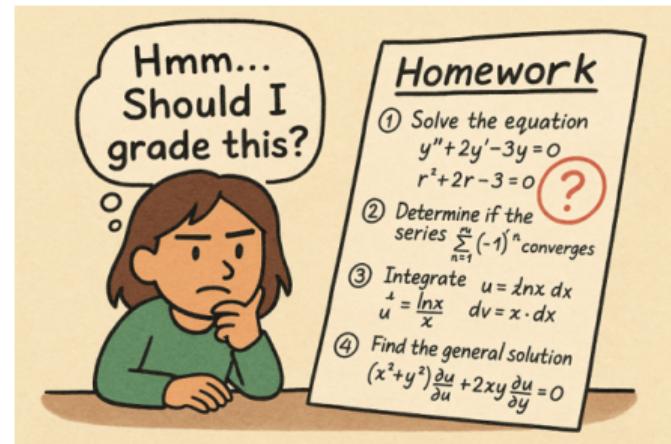
Scoring rules	$G(p)$	divergence $d(\hat{p}, p)$
Log	$p \ln p + (1 - p) \ln(1 - p)$	$\ln \frac{p}{\hat{p}} + (1 - p) \ln \frac{1 - p}{1 - \hat{p}} = D_{KL}(\hat{p}, p)$
Quadratic	$-2p(1 - p)$	$2(p - q)^2$
v-shaped	$c(1 - p)1[p < c] + (1 - c)p1[p \geq c]$	$\begin{cases} 0 & \text{if } p, q < c \text{ or } p, q \geq c \\ p - c & \text{otherwise} \end{cases}$



Applications: Optimization of scoring rule

Peer review

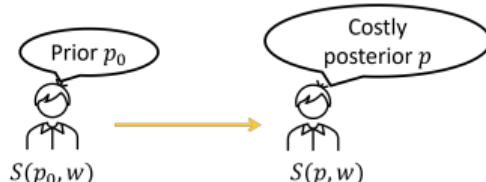
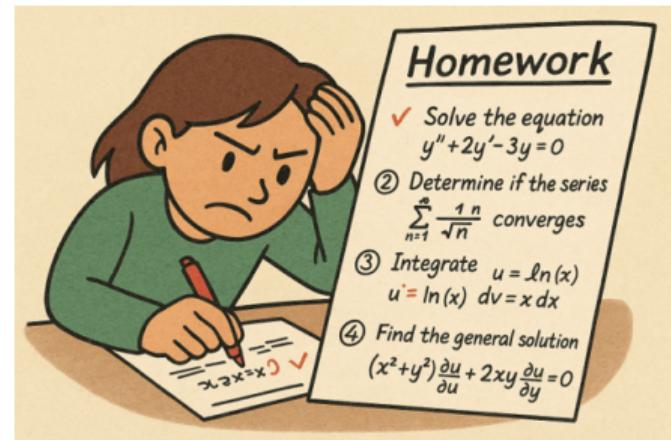
1. Principle announces S
2. Agent reports $\hat{p} \in [0, 1]$
3. Outcome $w \in \{0, 1\}$ reveals
4. Agent gets $S(\hat{p}, w)$



Incentivize costly forecasts

Peer review with effort

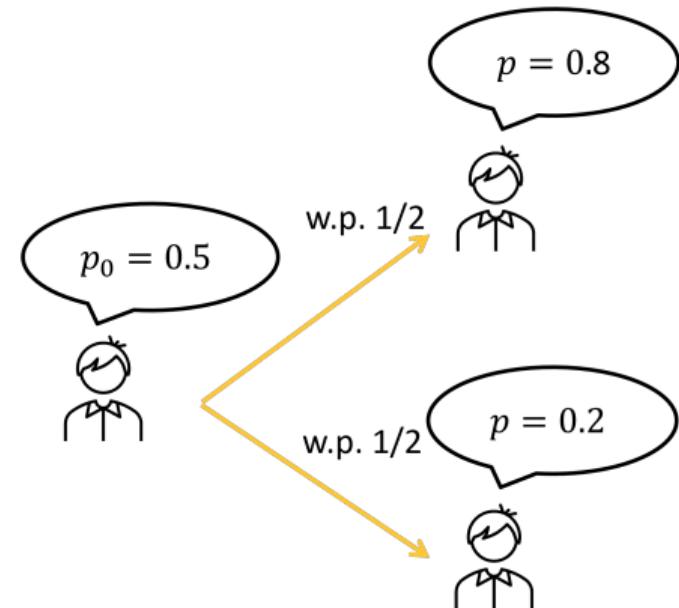
1. Principle announces S
2. Agent decides to acquire costly information P
3. Agent reports $\hat{p} \in [0, 1]$
4. Outcome $w \in \{0, 1\}$ reveals
5. Agent gets $S(\hat{p}, w)$



Incentivize costly forecasts

Peer review with effort

1. Principle announces S
2. Agent decides to acquire costly information P
3. Agent reports $\hat{p} \in [0, 1]$
4. Outcome $w \in \{0, 1\}$ reveals
5. Agent gets $S(\hat{p}, w)$



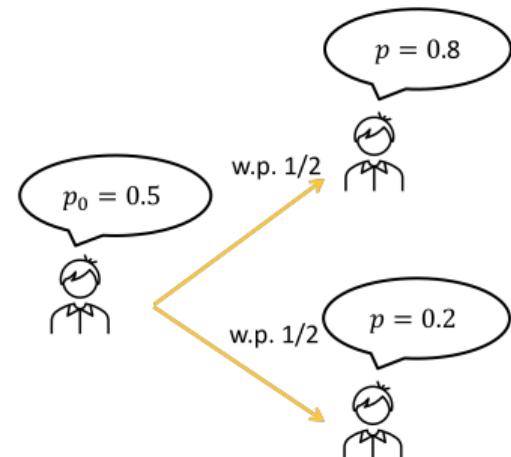
Incentivize costly forecasts

Given a joint distribution P between w and p , the expected payments before and after costly signal are

- Truthful prior: $G(p_0)$
- Truthful posterior: $\mathbb{E}_P[G(p)]$ where $\mathbb{E}_P[p] = p_0$
- Information gain: difference of payment

$$\mathbb{E}_P[G(p)] - G(p_0) = \mathbb{E}_P[G(p)] - G(\mathbb{E}_P[p])$$

The gap of Jensen's ineq. = convexity at p_0



Optimization of scoring rule: Model [Hartline et al., 2020]

Model

Given an information structure P on (w, p) , design “bounded” scoring rule S with G so that maximize the expected gain

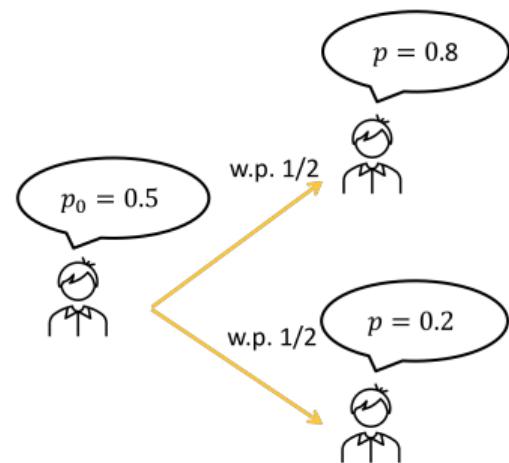
$$\max_G \mathbb{E}_P[G(p)] - G(\mathbb{E}_P[p]) \text{ such that } G \text{ is convex and bounded}$$

1. Bounded ex-post payment [Hartline et al., 2020]:

$$0 \leq S(p, w) \leq 1.$$

2. Bounded expected payment [Chen and Yu, 2021]:

$$0 \leq G \leq 1.$$

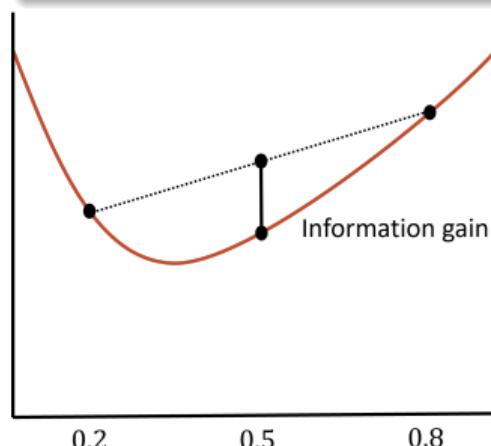


Optimization of scoring rule: Theorem

Theorem

v-shaped scoring rules are optimal. Let p_0 be the prior of the $w \in \{0, 1\}$, and $x \mapsto \max\{a(x - x_0) + c, b(x - x_0) + c\}$ be a v-shaped function with (x_0, a, b, c) .

- *A v-shaped function with $(p_0, \frac{-1}{p_0}, \frac{1}{1-p_0}, 0)$ is optimal for the ex-ante setting.*
- *A v-shaped function with $(p_0, \frac{-1}{2\max\{p_0, 1-p_0\}}, \frac{1}{2\max\{p_0, 1-p_0\}}, \frac{1}{2})$ is optimal for the ex-post setting.*

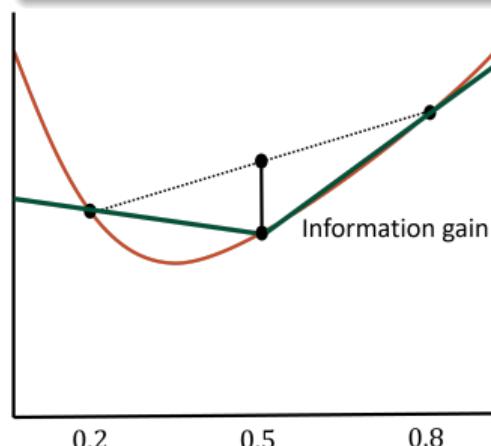


Optimization of scoring rule: Theorem

Theorem

v-shaped scoring rules are optimal. Let p_0 be the prior of the $w \in \{0, 1\}$, and $x \mapsto \max\{a(x - x_0) + c, b(x - x_0) + c\}$ be a v-shaped function with (x_0, a, b, c) .

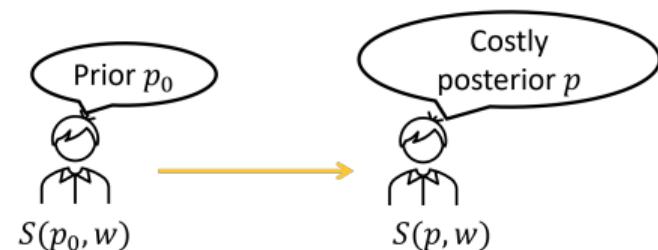
- *A v-shaped function with $(p_0, \frac{-1}{p_0}, \frac{1}{1-p_0}, 0)$ is optimal for the ex-ante setting.*
- *A v-shaped function with $(p_0, \frac{-1}{2\max\{p_0, 1-p_0\}}, \frac{1}{2\max\{p_0, 1-p_0\}}, \frac{1}{2})$ is optimal for the ex-post setting.*



How can we handle unknown P

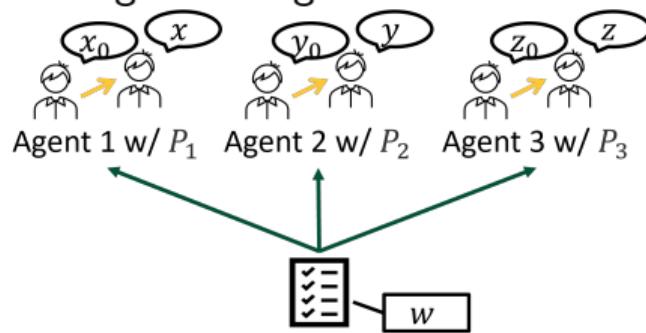
Peer review with effort

1. Principle announce S
2. Agent decides to acquire costly information P
3. Agent reports $\hat{p} \in [0, 1]$
4. Outcome reveals $w \in \{0, 1\}$
5. Agent gets $S(\hat{p}, w)$

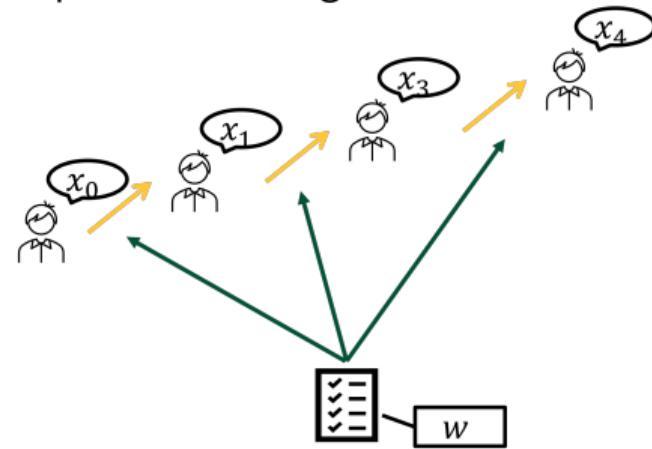


Multiple possible information structures $\mathcal{P} = \{P_1, \dots\}$

Heterogeneous agents

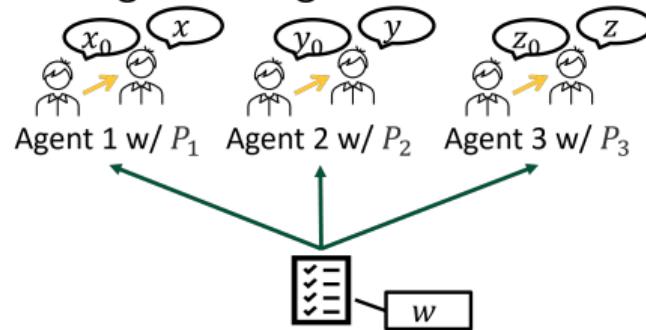


Sequential learning

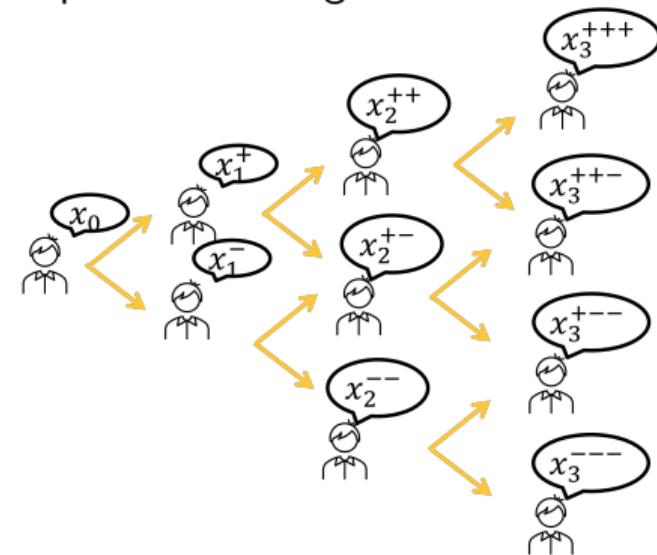


Multiple possible information structures $\mathcal{P} = \{P_1, \dots\}$

Heterogeneous agents



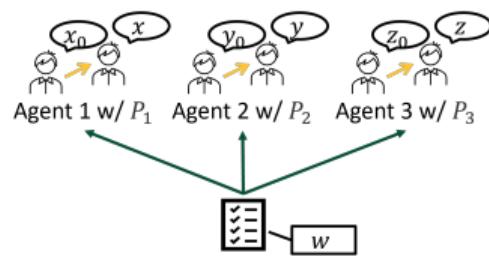
Sequential learning



Model

Given a collection of information structure \mathcal{P} on (w, p) , design “bounded” scoring rule S with G so that maximizes the expected gain

$$\max_G \min_{P \in \mathcal{P}} \mathbb{E}_P[G(p)] - G(\mathbb{E}_P[p]) \text{ such that } G \text{ is convex and bounded}$$

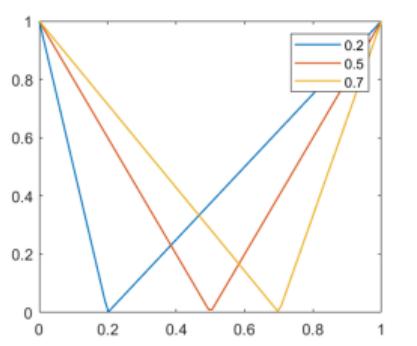


Optimization of scoring rule: Results

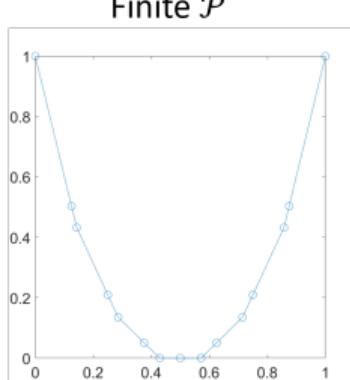
Different \mathcal{P} leads to different optimal scoring rules

1. Singleton: a v -shaped G is optimal \rightarrow turning point at prior
2. Finite \mathcal{P} : an efficient algorithm and is piecewise linear is optimal \rightarrow turning points at support of all information structures.

Singleton \mathcal{P}



Finite \mathcal{P}

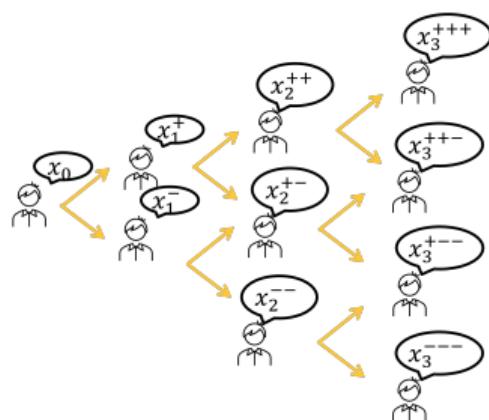
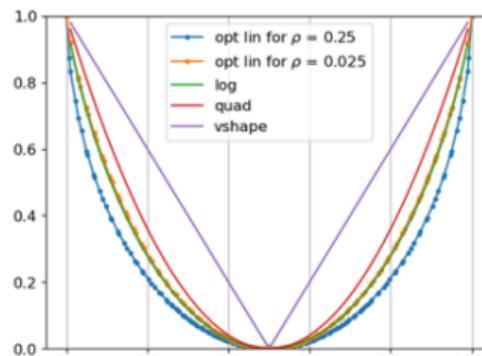


V-shape

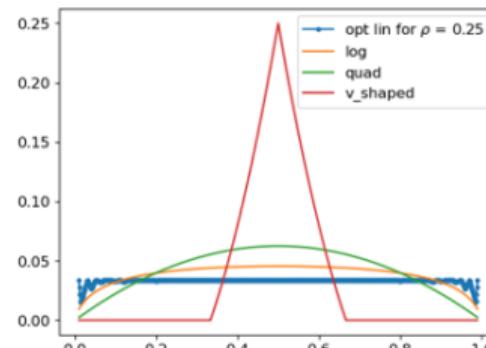
Piecewise linear

Optimization of scoring rule: Simulations

Log scoring rule perform well under Beta-Bernoulli setting



(a) Associated convex functions



(b) Information gain with $\rho = 0.25$.

1. Proper Scoring Rules

- 1.1 Definition of proper scoring rule
- 1.2 Proper scoring rule = convex function
- 1.3 Proper scoring rule = decision problem

Application: Monotonicity of information

Application: U-calibration

2. Generalized Scoring Rules

3. Prediction Markets

Bayesian Decision Problem

A *decision problem* (\mathcal{A}, Ω, u) consists of an action space (decisions) \mathcal{A} , an outcome space Ω , and a value function $u : \mathcal{A} \times \Omega \rightarrow \mathbb{R}$. An agent chooses an action based on belief $\mathbf{p} \in \Delta_\Omega$ of the outcome w to maximize the expected utility.

- Given an action a , the agent gets $u(a, w)$ under an outcome w and $u(a, \mathbf{p}) := \mathbb{E}_{w \sim \mathbf{p}}[u(a, w)]$ in expectation.
- $a_p \in \mathcal{A}$ is a **Bayes act/best response** to \mathbf{p} if for all a , $u(a_p, \mathbf{p}) \geq u(a, \mathbf{p})$, and

$$U(\mathbf{p}) := \max_{a \in \mathcal{A}} u(a, \mathbf{p})$$

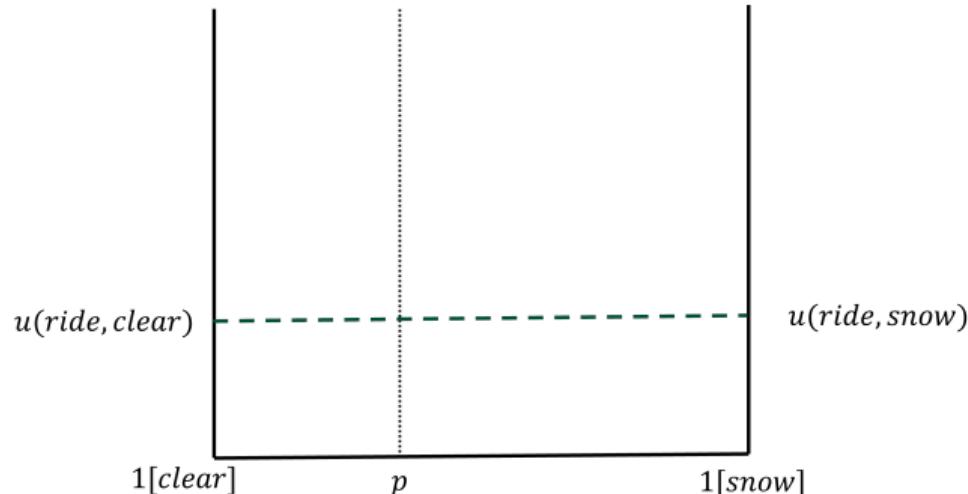
Example of Decision Problem¹

A journey through Rutgers

- $\Omega = \{\text{clear, snow}\}$,
- $\mathcal{A} = \{\text{ride, walk}\}$.
- value function
 - If we ride

$$u(\text{ride, clear}) = 4,$$

$$u(\text{ride, snow}) = 4.$$



$$u(\text{ride}, p) = 4$$

¹Credit: Adapted from Bo Waggoner's slides.

Example of Decision Problem¹

A journey through Rutgers

- $\Omega = \{\text{clear, snow}\}$,
- $\mathcal{A} = \{\text{ride, walk}\}$.
- value function
 - If we ride

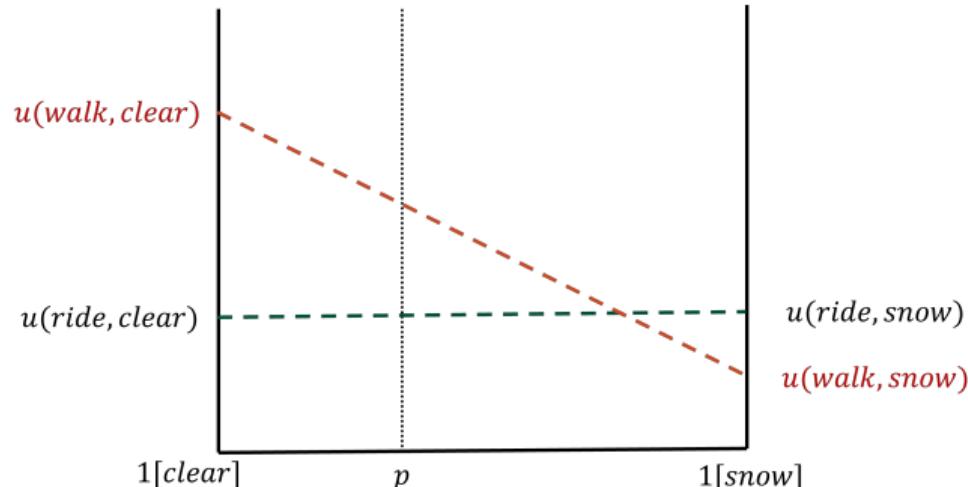
$$u(\text{ride, clear}) = 4,$$

$$u(\text{ride, snow}) = 4.$$

- If we walk

$$u(\text{walk, clear}) = 10,$$

$$u(\text{ride, snow}) = 2.$$



$$u(\text{walk, } p) = 10 - 8p$$

¹Credit: Adapted from Bo Waggoner's slides.

Example of Decision Problem¹

A journey through Rutgers

- $\Omega = \{\text{clear, snow}\}$,
- $\mathcal{A} = \{\text{ride, walk}\}$.
- value function
 - If we ride

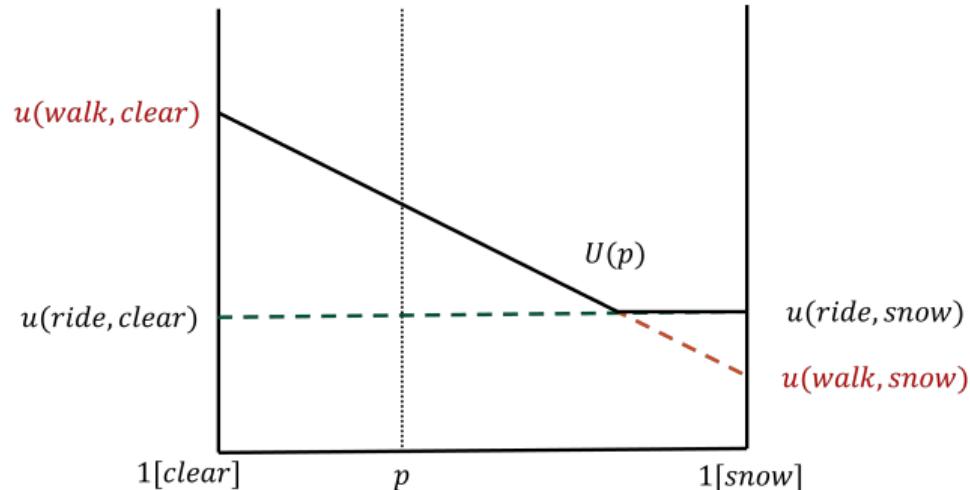
$$u(\text{ride, clear}) = 4,$$

$$u(\text{ride, snow}) = 4.$$

- If we walk

$$u(\text{walk, clear}) = 10,$$

$$u(\text{ride, snow}) = 2.$$



$$U(p) = \max_{a=\text{ride, walk}} u(a, p) = \max\{4, 10 - 8p\}$$

¹Credit: Adapted from Bo Waggoner's slides.

Example of Decision Problem¹

A journey through Rutgers

- $\Omega = \{\text{clear, snow}\}$,
- $\mathcal{A} = \{\text{ride, walk}\}$.
- value function
 - If we ride

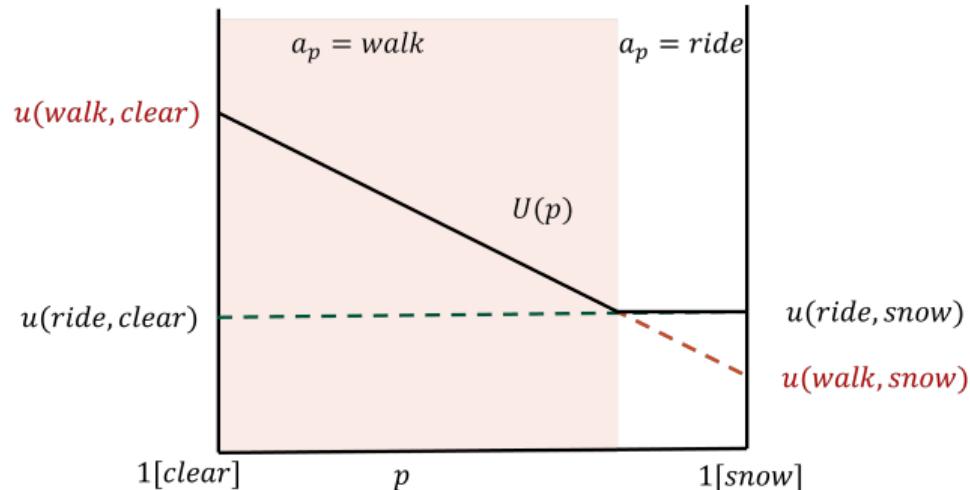
$$u(\text{ride, clear}) = 4,$$

$$u(\text{ride, snow}) = 4.$$

- If we walk

$$u(\text{walk, clear}) = 10,$$

$$u(\text{ride, snow}) = 2.$$



$$a_p = \begin{cases} \text{walk} & \text{if } p < 3/4 \\ \text{ride} & \text{otherwise.} \end{cases}$$

¹Credit: Adapted from Bo Waggoner's slides.

Proper Scoring Rules = Decision Problem

Theorem

For any decision problem (\mathcal{A}, Ω, u) there exists a proper scoring rule $S : \Delta_\Omega \times \Omega \rightarrow \mathbb{R}$ with G so that for all belief \mathbf{p}

$$G(\mathbf{p}) = U(\mathbf{p})$$

Proof. Set $S(\hat{\mathbf{p}}, w) := u(a_{\hat{\mathbf{p}}}, w)$ and use revelation principal. □

Proper Scoring Rules = Decision Problem

Theorem

For any decision problem (\mathcal{A}, Ω, u) there exists a proper scoring rule $S : \Delta_\Omega \times \Omega \rightarrow \mathbb{R}$ with G so that for all belief \mathbf{p}

$$G(\mathbf{p}) = U(\mathbf{p})$$

Proof. Set $S(\hat{\mathbf{p}}, w) := u(a_{\hat{\mathbf{p}}}, w)$ and use revelation principal. □

Note that a scoring rule is a special case of decision problem where the action space $\mathcal{A} = \Delta_\Omega$.

Proper Scoring Rules = Decision Problem

Theorem

For any decision problem (\mathcal{A}, Ω, u) there exists a proper scoring rule $S : \Delta_\Omega \times \Omega \rightarrow \mathbb{R}$ with G so that for all belief \mathbf{p}

$$G(\mathbf{p}) = U(\mathbf{p})$$

Decision problem

- $\Omega = \{\text{clear, snow}\}$,
- $\mathcal{A} = \{\text{ride, walk}\}$, and
 - $u(\text{ride, clear}) = 4$,
 - $u(\text{ride, snow}) = 4$,
- $u(\text{walk, clear}) = 10$,
- $u(\text{ride, snow}) = 2$.

Proper Scoring rule

- $\Omega = \{\text{clear, snow}\}$,
- $\Delta_\Omega = [0, 1]$ probability of snow
- $S(\hat{p}, w) = u(a_{\hat{p}}, w) = \begin{cases} 10 & \text{if } \hat{p} \leq 3/4, w = \text{clear} \\ 2 & \text{if } \hat{p} \leq 3/4, w = \text{snow} \\ 4 & \text{otherwise.} \end{cases}$

v-shaped scoring rule!

Applications: Monotonicity of information

Given a decision problem (\mathcal{A}, Ω, u) , which do you prefer?

- a signal s (e.g., COVID test), and get a posterior of the outcome $\mathbf{p}^s = \Pr[w \mid s]$, or
- prior $\mathbf{p} = \Pr[w]$.

Theorem (Information never harms)

$$\mathbb{E}[u(a_{\mathbf{p}^s}, w)] \geq \mathbb{E}[u(a_{\mathbf{p}}, w)]$$

Proof.

$$\begin{aligned}\mathbb{E}[u(a_{\mathbf{p}^s}, w)] &= \mathbb{E}[G(\mathbf{p}^s)] && \text{(decision problem = proper scoring rule)} \\ &\geq G(\mathbb{E}\mathbf{p}^s) && (G \text{ is convex}) \\ &= \mathbb{E}[u(a_{\mathbf{p}}, w)]. && \text{(decision problem = proper scoring rule)}\end{aligned}$$

□

Applications: U-calibration [Kleinberg et al., 2023]

How can we measure the quality of a sequence of forecasts and outcomes (p_t, w_t) for agents with unknown decision problems?

- Given a decision problem u , the regret of following (best responding) the forecasts is

$$Reg_u = \max_a \sum_t u(a, w_t) - \sum_t u(a_{p_t}, w_t) = \max_q \sum_t S(q, w_t) - \sum_t S(p_t, w_t)$$

- U -calibration error is the worst regret on all bounded decision problems \mathcal{U} ,

$$UCal = \sup_{u \in \mathcal{U}} Reg_u = \sup_{S \text{ bounded proper}} \left[\max_q \sum_t S(q, w_t) - \sum_t S(p_t, w_t) \right].$$

- U-calibration $\neq \ell_1$ -Calibration
 - ℓ_1 -calibration punishes everywhere
 - U -calibration is budgeted (recall that for the scoring rule design: G cannot be too curved). In particular, U -calibration $\approx V$ -calibration.

Scoring rule design = mechanism design²

Scoring rule design

$$\max_{\text{scoring rule}} \mathbb{E}[\text{objective}]$$

s.t scoring rule is proper and bounded

A scoring rule is proper iff

1. utility of agent's forecast is convex
2. score evaluates state on supporting plane of utility

Mechanism Design

$$\max_{\text{mechanism}} \mathbb{E}[\text{objective}]$$

s.t mechanism is i.c. and feasible

A mechanism incentive compatible iff [Rochet, 1985]

1. utility of agent's forecast is convex
2. allocation is sub-gradient of utility (with payment, gives supporting hyperplane)

²Credit: Adapted from Jason Hartline's slides. Also check out [Frangillo and Kash, 2014]

Current Progress

1. Proper Scoring Rules

2. Generalized Scoring Rules

- 2.1 Property Elicitation—from forecast to property
- 2.2 Application: Peer Prediction
- 2.3 Surrogate scoring rule—from Outcome to Observation

3. Prediction Markets

Beyond scoring forecast

	Scoring rule S	Decision problem u	General loss function ℓ
Report	forecast $\hat{\mathbf{p}} \in \Delta_{\Omega}$	action $a \in \mathcal{A}$	$r \in \mathcal{R}$
Observe	outcome $w \in \Omega$	outcome $w \in \Omega$	observation $y \in \mathcal{Y}$
Reward	$S(\hat{\mathbf{p}}, w)$	$u(a, w)$	$-\ell(r, y)$

- Property elicitation: Can we directly elicit a specific property of a distribution (e.g., quantile, mean, variance)?
- Surrogate scoring rule, peer prediction: Rather than the true outcome w , can we use a noisy or stochastically related observation?

Property Elicitation: Definition

Definition

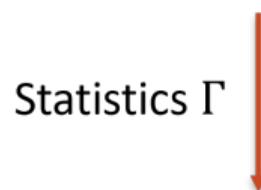
A *property/statistic* is a function $\Gamma : \Delta_\Omega \rightarrow \mathcal{R}$. A (generalized) scoring rule $S : \mathcal{R} \times \Omega \rightarrow \mathbb{R}$ *elicits* Γ if

$$\Gamma(\mathbf{p}) = \arg \max_{r \in \mathcal{R}} \mathbb{E}_{w \sim \mathbf{p}} S(r, w).$$

Moreover, Γ is *elicitable* if there exists S that elicit it.

Goal: Ask for statistics rather than full distributions, e.g., mean, variance, median, and ensure that $S(\Gamma(\mathbf{p}), \mathbf{p}) \geq S(r, \mathbf{p})$ for all $r \in \mathcal{R}$.

Forecast $p \in \Delta_\Omega \longrightarrow$ Outcome $w \in \Omega$



Property $r = \Gamma(p)$

Threshold property

- (Forecast) What is the probability of snow tomorrow?
- (Property) Is the probability of snow larger than $3/4$? $\Gamma(p) = 1[p > 3/4]$

Threshold property

- (Forecast) What is the probability of snow tomorrow?
- (Property) Is the probability of snow larger than $3/4$? $\Gamma(p) = 1[p > 3/4]$

create a decision problem to score property (do you ride?)

Property Elicitation: Threshold property

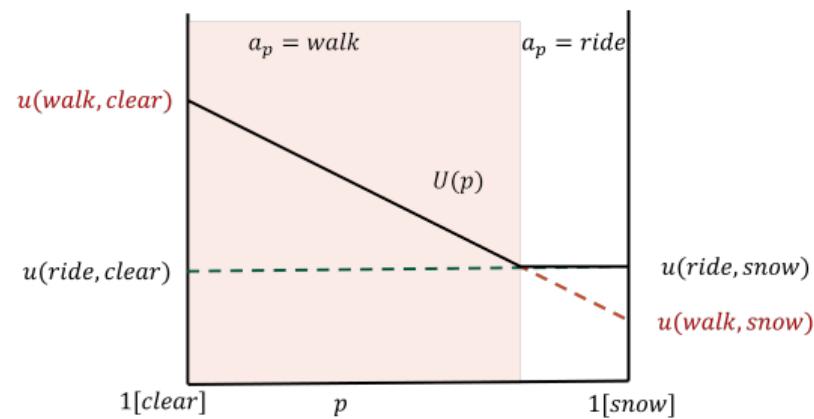
Threshold property

- (Forecast) What is the probability of snow tomorrow?
- (Property) Is the probability of snow larger than $3/4$? $\Gamma(p) = 1[p > 3/4]$

create a decision problem to score property (do you ride?)

Decision problem u

- $\Omega = \{\text{clear, snow}\}$,
- $\mathcal{A} = \{\text{ride, walk}\}$, and
- $\begin{cases} u(\text{ride, clear}) = 4, \\ u(\text{ride, snow}) = 4, \\ u(\text{walk, clear}) = 10, \\ u(\text{ride, snow}) = 2. \end{cases}$



Property Elicitation: Threshold property

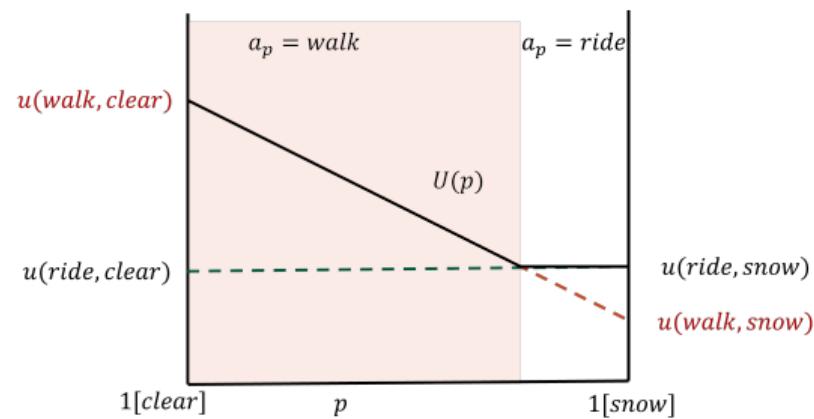
Threshold property

- (Forecast) What is the probability of snow tomorrow?
- (Property) Is the probability of snow larger than $3/4$? $\Gamma(p) = 1[p > 3/4]$

create a decision problem to score property (do you ride?)

Scoring rule for property S

- $\Omega = \{\text{clear, snow}\}$,
- $\mathcal{A} = \{0, 1\}$, and
- $\begin{cases} S(1, \text{clear}) = 4, \\ S(1, \text{snow}) = 4, \\ S(0, \text{clear}) = 10, \\ S(1, \text{snow}) = 2. \end{cases}$



Elicit General threshold property

Threshold property

Is the probability of snow larger than c ? ($\Gamma(p) = 1[p > c]$ and $\mathcal{R} = \{0, 1\}$.)

$$\begin{cases} S(1, \text{clear}) = 0, \\ S(1, \text{snow}) = 1 - c, \\ S(0, \text{clear}) = c, \\ S(1, \text{snow}) = 0. \end{cases}$$

v -shaped binary Ω : $S(\hat{p}, w) = (1 - c)1[p > c, w = 1] + c1[\hat{p} \leq c, w = 0]$

Mode

$$\Gamma(p) = \arg \max_w p(w) \text{ and } \mathcal{R} = \Omega.$$

- Idea: create a decision problem to score property
- $S(r, w) = 1[r = w]$

Mean of real-valued random variable

How much snow do you expect will fall tomorrow? ($\Gamma(\mathbf{p}) = \mathbb{E}_{w \sim \mathbf{p}}[w]$ and $\mathcal{R} = \mathbb{R}$.)

- Idea: **create a loss function to score property**
- As the expectation minimizes the squared loss, we can take $S(r, w) = -\|r - w\|^2$ that elicits mean.

Property for real-valued random variable

- We can derive scoring rules from loss functions in ML

Statistic/Property Γ	scoring rule for Γ	loss function
Mean	$-(r - w)^2$	square loss
Median	$- r - w $	absolute
α -quantile	$-(r - w)(1[r \geq w] - \alpha)$	Pinball
Mode	$1[r = w]$	zero-one loss

- Are all property elicitable? The variance is not (directly) elicitable in general.

*Proof.*³ Consider a Bernoulli on $\{0, 1\}$ with p . Suppose that a scoring rule S elicits the variance.

- For $p = 1$, $w = 1$ surely and the optimal report is 0, $S(r, 1) \leq S(0, 1)$ for all r .
- For $p = 0$, $w = 0$ surely, and $S(r, 1) \leq S(0, 0)$ for all r .

$$S(r, p) = p \cdot S(r, 1) + (1 - p) \cdot S(r, 0) \leq S(0, p) \text{ for all } r \text{ and } p.$$

□

³ Adapted from Bo's blog

Elicit Finite-valued properties [Lambert and Shoham, 2009]

- Given a property $\Gamma : \Delta_\Omega \rightarrow \mathcal{R}$, a **level set** consists of distributions that have the same correct answer $\Gamma^{-1}(r)$.

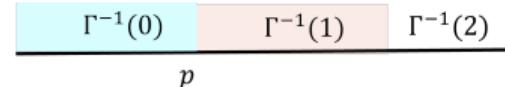
$$\begin{array}{c} \Gamma^{-1}(0) \qquad \qquad \qquad \Gamma^{-1}(1) \\ \hline p \\ \Gamma(p) = 1[p > 3/4] \end{array}$$

Elicit Finite-valued properties [Lambert and Shoham, 2009]

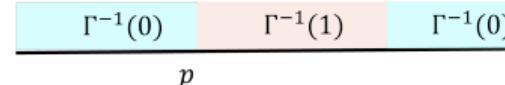
- Given a property $\Gamma : \Delta_\Omega \rightarrow \mathcal{R}$, a **level set** consists of distributions that have the same correct answer $\Gamma^{-1}(r)$.
- Which do you think are elicitable?

(a)

(b)

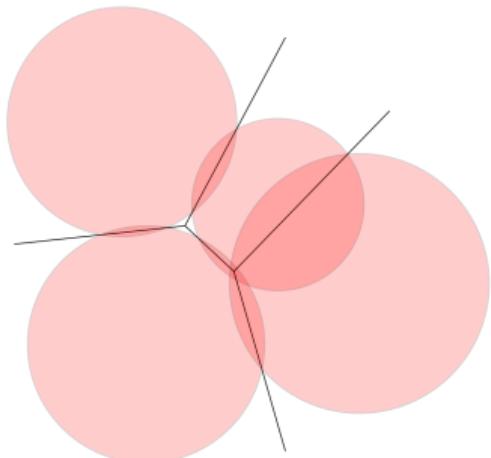


(c)



Elicit Finite-valued properties [Lambert and Shoham, 2009]

- Given a property $\Gamma : \Delta_\Omega \rightarrow \mathcal{R}$, a **level set** consists of distributions that have the same correct answer $\Gamma^{-1}(r)$.
- Which do you think are elicitable?
- Γ is elicitable if and only if Γ is **power diagram** (weighted voronoi diagram): Given a set of points $\mathbf{c}_i \in \Delta_\Omega$ and weights $d_i \in \mathbb{R}$,
$$\text{cell}_i := \{\mathbf{p} : \|\mathbf{c}_i - \mathbf{p}\|^2 - d_i \leq \|\mathbf{c}_j - \mathbf{p}\|^2 - d_j, \forall j\}.$$



Elicit Finite-valued properties [Lambert and Shoham, 2009]

Theorem

A finite-valued property Γ is elicitable if and only if $\{\Gamma^{-1}(r) : r \in \mathcal{R}\}$ is a power diagram of Δ_Ω for some set of weighted sites $(\mathbf{c}_r, d_r)_{r \in \mathcal{R}}$.

Proof. \Leftarrow) Given a power diagram with $(\mathbf{c}_s, d_s)_{s \in \mathcal{R}}$, let $S(r, w) := 2\langle 1_w, \mathbf{c}_r \rangle + d_r - \|\mathbf{c}_r\|^2$ for all $r \in \mathcal{R}$ and $w \in \Omega$. We show the score elicit the following property

$$\Gamma(\mathbf{p}) = \{r : \|\mathbf{c}_r - \mathbf{p}\|^2 - d_r \leq \|\mathbf{c}_s - \mathbf{p}\|^2 - d_s, \forall s\}.$$

For all $r, s \in \mathcal{R}$ and \mathbf{p} with $r \in \Gamma(\mathbf{p})$ and $s \notin \Gamma(\mathbf{p})$

$$\begin{aligned}\mathbb{E}_{w \sim \mathbf{p}}[S(s, w)] &= 2\langle \mathbf{c}_s, \mathbf{p} \rangle + d_s - \|\mathbf{c}_s\|^2 \\ &= \|\mathbf{p}\|^2 - \|\mathbf{p} - \mathbf{c}_s\|^2 + d_s \\ &< \|\mathbf{p}\|^2 - \|\mathbf{p} - \mathbf{c}_r\|^2 + d_r = \mathbb{E}_{w \sim \mathbf{p}}[S(r, w)].\end{aligned}$$

□

Theorem

A finite-valued property Γ is elicitable if and only if $\{\Gamma^{-1}(r) : r \in \mathcal{R}\}$ is a power diagram of Δ_Ω for some set of weighted sites $(\mathbf{c}_r, d_r)_{r \in \mathcal{R}}$.

Proof. \Rightarrow) If S elicits Γ , let $\mathbf{c}_r := \frac{1}{2}(S(r, w))_{w \in \Omega} \in \mathbb{R}^{|\Omega|}$, and $d_r = \|\mathbf{c}_r\|^2 \in \mathbb{R}$. Now we show $r \in \Gamma(\mathbf{p})$ if and only if $\|\mathbf{c}_r - \mathbf{p}\|^2 - d_r \leq \|\mathbf{c}_s - \mathbf{p}\|^2 - d_s, \forall s$. For all r, s and \mathbf{p} with $r \in \Gamma(\mathbf{p})$,

$$\begin{aligned}
 \|\mathbf{c}_s - \mathbf{p}\|^2 - d_s &= \|\mathbf{c}_s\|^2 - 2\langle \mathbf{c}_s, \mathbf{p} \rangle + \|\mathbf{p}\|^2 - d_s \\
 &= -2\langle \mathbf{c}_s, \mathbf{p} \rangle + \|\mathbf{p}\|^2 && (d_r = \|\mathbf{c}_r\|^2) \\
 &= -\mathbb{E}_{w \sim \mathbf{p}}[S(s, w)] + \|\mathbf{p}\|^2 && (\mathbb{E}_{w \sim \mathbf{p}}[S(s, w)] = 2\langle \mathbf{c}_s, \mathbf{p} \rangle) \\
 &\geq -\mathbb{E}_{w \sim \mathbf{p}}[S(r, w)] + \|\mathbf{p}\|^2 && (\mathbb{E}_{w \sim \mathbf{p}}[S(r, w)] \geq \mathbb{E}_{w \sim \mathbf{p}}[S(s, w)]) \\
 &= \|\mathbf{c}_r - \mathbf{p}\|^2 - d_r
 \end{aligned}$$

□

Current Progress

1. Proper Scoring Rules

2. Generalized Scoring Rules

2.1 Property Elicitation—from forecast to property

2.2 Application: Peer Prediction

PP through Proper Scoring Rule [Miller et al., 2005]

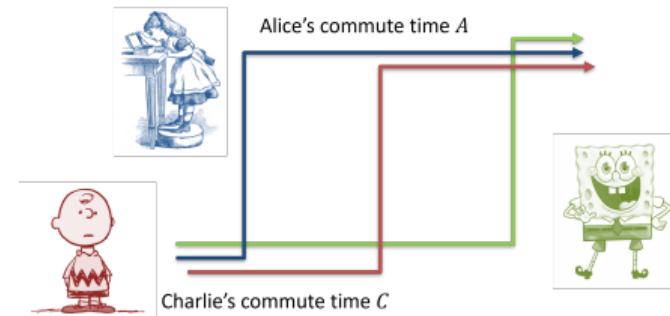
Three extensions

2.3 Surrogate scoring rule—from Outcome to Observation

3. Prediction Markets

Application: Peer prediction

- Proper scoring rules require the outcome w which is always not observable
 - Subjective: Are you happy? Do prefer ChatGPT or Gemini?
 - Private: What is your commute time?
- Peer prediction: As agents' signals are often dependent, we can use their report to elicit agents' truthful reports.



Peer prediction through proper scoring rule [Miller et al., 2005]

Alice and Bob have signals in $x \in \mathcal{X}$ and $y \in \mathcal{Y}$ respectively jointly sampled from P .

- Alice and Bob report \hat{x} and \hat{y} .
- Compute their posteriors $P(\cdot | \hat{x})$, $P(\cdot | \hat{y})$ on a scoring rule S ,

$$M_A(\hat{x}, \hat{y}) = S(P(\cdot | \hat{x}), \hat{y}) \text{ and } M_B(\hat{x}, \hat{y}) = S(P(\cdot | \hat{y}), \hat{x}).$$

- Pros and cons
 - **Truthful**: Ensure truth-telling is a Bayesian Nash equilibrium⁴, since S is proper

$$\mathbb{E}[M_A(x, y)] = S(\mathbf{p}, \mathbf{p}) \geq S(\hat{\mathbf{p}}, \mathbf{p}) = \mathbb{E}[M_A(\hat{x}, y)] \text{ with } \mathbf{p} = P(\cdot | x), \hat{\mathbf{p}} = P(\cdot | \hat{x})$$

- **Minimal**: Agents only report their signals.
- **Not detailed-free**: Require the knowledge of P .

⁴The truth-telling is a strict BNE when P is stochastic relevant.

Three tricks

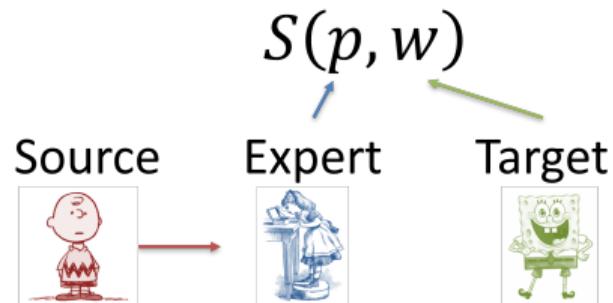
Can we relax the knowledge of P ?

1. Partial knowledge: restrict the possible P to a subset \mathcal{P} , e.g., self dominating, self-predicting
2. Non-minimal: Ask agents to report not only signal but forecast or second order forecast [Prelec, 2004]
3. Learn P from iid reports+DPI [Kong and Schoenebeck, 2019, Schoenebeck and Yu, 2020] or LLM [Lu et al., 2024]

Can we characterize all truthful minimal mechanisms M under \mathcal{P} ?

- **Truthful reporting is a property of posterior** $\Gamma(\mathbf{p}) = x$ if and only if $\mathbf{p} \in D_x := \{P(\cdot | x) : P \in \mathcal{P}\} \subseteq \Delta_{\mathcal{Y}}$.
- Example: Output agreement algorithm
 - $\mathcal{X} = \mathcal{Y} = \{0, 1\}$
 - \mathcal{P} consists of self-dominance distribution $P(z | z) > P(z' | z)$ for all $z, z' \in \{0, 1\}$.
 - $D_1 = \{p : p > (1 - p)\}$ and $D_0 = \{p : p < 1/2\}$
 - $\Gamma(p) = 1[p > 1/2]$ = mode

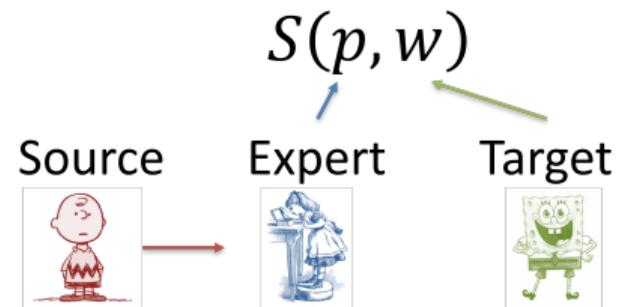
- Given a proper scoring rule, agents can play one of three roles
 - Expert**: makes prediction.
 - Source**: provides information to the expert.
 - Target**: reports his signal and get predicted.
- We can design mechanisms by randomize agent's rules.



Source Differential peer prediction mechanism

Given a proper scoring rule S , in a source-DPP, three agents play one of three roles

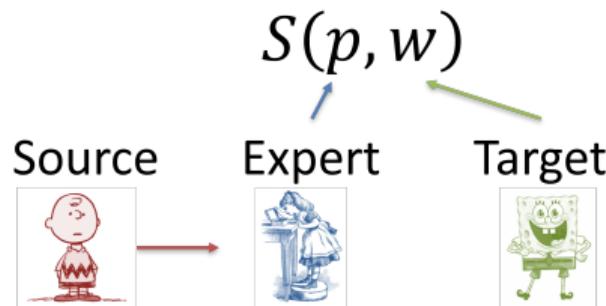
- **Expert** makes predictions p, p^+ and gets sum of the scores $S(p, t) + S(p^+, t)$
- **Source** provides signal to improve p^+ and get the difference $S(p^+, t) - S(p, t)$
- **Target** reports signal t and gets zero



Target Differential peer prediction mechanism

Given a *log scoring rule*, in target-DPP, three agents play one of three roles

- **Expert** makes two predictions and gets sum of the scores
- **Source** provides information for the second prediction and gets zero
- **Target** gets the difference



Connection to other peer prediction mechanism

Theorem ([Schoenebeck and Yu, 2023])

Source and Target-DPP are strongly truthful:

- *Truth-telling is a strict Bayesian Nash equilibrium.*
- *Truth-telling has the highest total payment (strictly better than non-permutation ones')*

New view point of BTS [Prelec, 2004]:

- Everyone plays the target and also provides the first prediction.
- We can learn an improved prediction if there are many symmetric agents.

Current Progress

1. Proper Scoring Rules

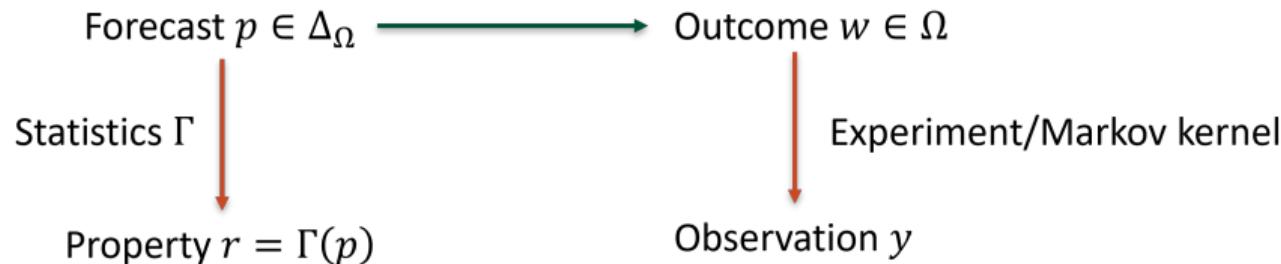
2. Generalized Scoring Rules

- 2.1 Property Elicitation—from forecast to property
- 2.2 Application: Peer Prediction
- 2.3 Surrogate scoring rule—from Outcome to Observation

3. Prediction Markets

Beyond scoring forecast

- Proper scoring rule: score a **forecast** $\hat{p} \in \Delta_\Omega$ using the **outcome** $w \in \Omega$
- Property elicitation: score a **property** $r \in \mathcal{R}$ using the **outcome**
- Do we need direct access to the true **outcome** w ?



Can we incentivize high-quality prediction when the ground truth is unavailable?

- Motivation: “How likely a study can be replicated?”
 - Forecasters are asked to provide a probabilistic prediction.
 - The SCORE program crowdsourced this question for 3000 studies to hundreds of researchers, while only a small fraction will have a real replication test.
 - We may use other's report to derive a noisy ground truth.

Article | [Open access](#) | Published: 19 November 2024

Examining the replicability of online experiments selected by a decision market

Surrogate scoring rule

- Idea: We can treat an observation $y \in \mathcal{Y}$ as surrogate of w if we know the conditional probability of y given w $\mathbf{T} \in \mathbb{R}^{\Omega \times |\mathcal{Y}|}$.
- Surrogate scoring rule: For all proper scoring rule $S : \Delta_\Omega \times \Omega \rightarrow \mathbb{R}$ and invertible \mathbf{T} ,

$$\tilde{S}(\hat{\mathbf{p}}, y) = \sum_z \mathbf{T}^{-1}(y, z) S(\hat{\mathbf{p}}, z)$$

- If $\mathcal{Y} = \Omega = \{0, 1\}$ with $\Pr[y = 1|w = 0] = e^-$ and $\Pr[y = 0|w = 1] = e^+$,

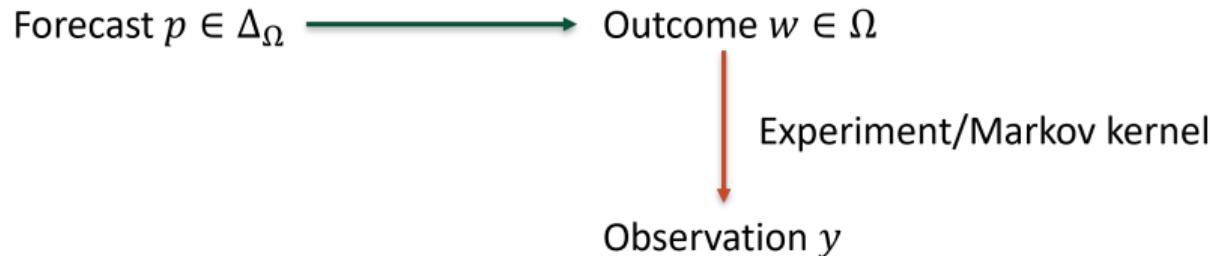
$$\tilde{S}(\hat{p}, 0) = \frac{1}{1 - e^- - e^+} ((1 - e^-) S(\hat{p}, 0) - e^+ S(\hat{p}, 1))$$

$$\tilde{S}(\hat{p}, 1) = \frac{1}{1 - e^- - e^+} (-e^+ S(\hat{p}, 0) + (1 - e^+) S(\hat{p}, 1))$$

Surrogate scoring rule

Theorem

If $\mathbf{T} \in \mathbb{R}^{\Omega \times |\mathcal{Y}|}$ has full row rank, the expectation of $\tilde{S}(\hat{\mathbf{p}}, \cdot) = \mathbf{T}^{-1}S(\hat{\mathbf{p}}, \cdot)$ equals $\mathbb{E}_{w \sim \mathbf{p}}[S(\hat{\mathbf{p}}, w)]$ for all \mathbf{p} and $\hat{\mathbf{p}}$.



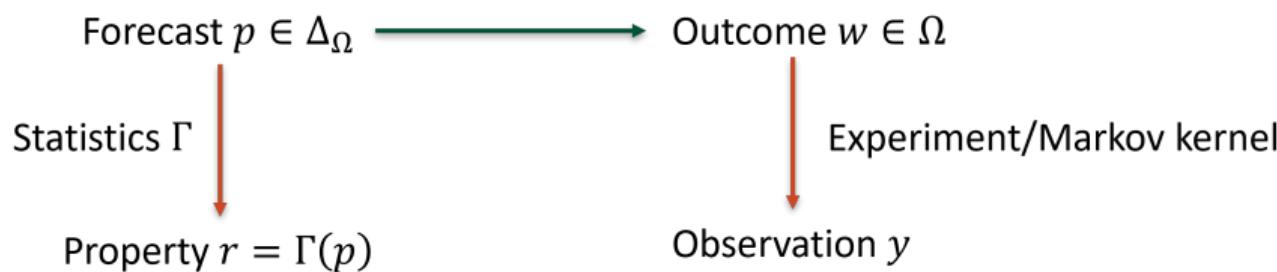
Proof. Because $\mathbf{T}^\top \Pr[w = \cdot] = \Pr[y = \cdot]$ and proper scoring rules S are affine in the outcome space,

$$\mathbb{E}[\tilde{S}(\hat{\mathbf{p}}, y)] = \langle \Pr[y = \cdot], \tilde{S}(\hat{\mathbf{p}}, \cdot) \rangle = \langle \mathbf{T}^\top \Pr[w = \cdot], \mathbf{T}^{-1}S(\hat{\mathbf{p}}, \cdot) \rangle = \mathbb{E}[S, \hat{\mathbf{p}}, w]$$

□

Surrogate scoring rule and property elicitation

- Backward correction: change the observation y to mimic w .⁵
- Forward correction: treat the forecast \mathbf{p} of w as a property of observation y where $\Gamma(\mathbf{q}_y) = \mathbf{Tq}_y = \mathbf{p}$, and pay $S(\Gamma^{-1}(\hat{\mathbf{p}}, y)$

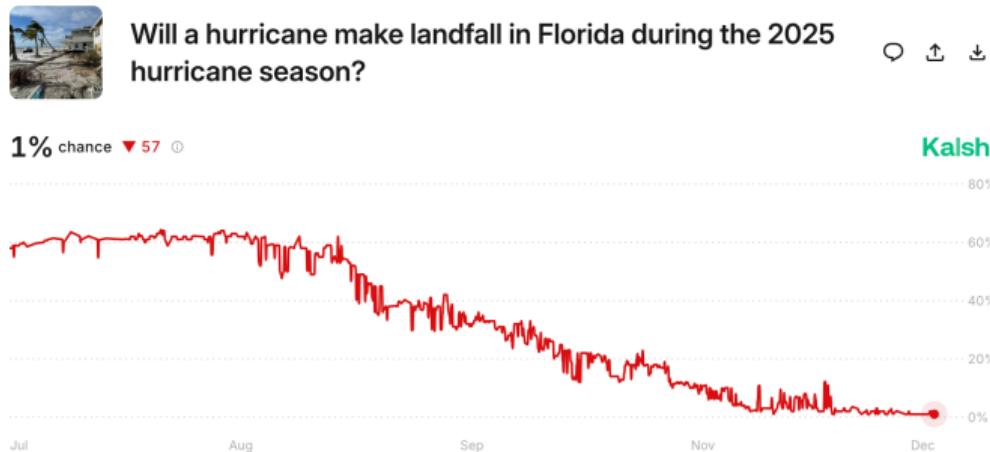
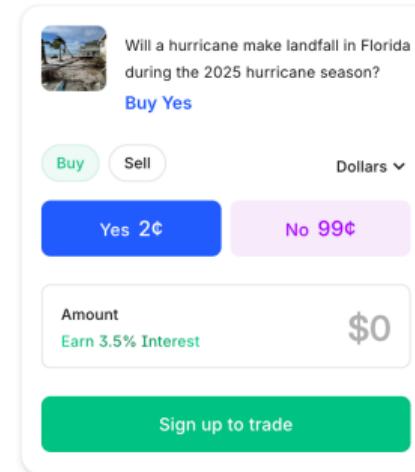


⁵[Xia, 2025] also uses the same trick.

1. Proper Scoring Rules
2. Generalized Scoring Rules
3. Prediction Markets
 - 3.1 What is a prediction market?
 - 3.2 Connection to scoring rules: Cost-function-based automated market makers (AMMs)
 - 3.3 Computational aspects of AMM designs
 - 3.4 Economic aspects of AMM designs
 - 3.5 Regulatory landscape and discussions

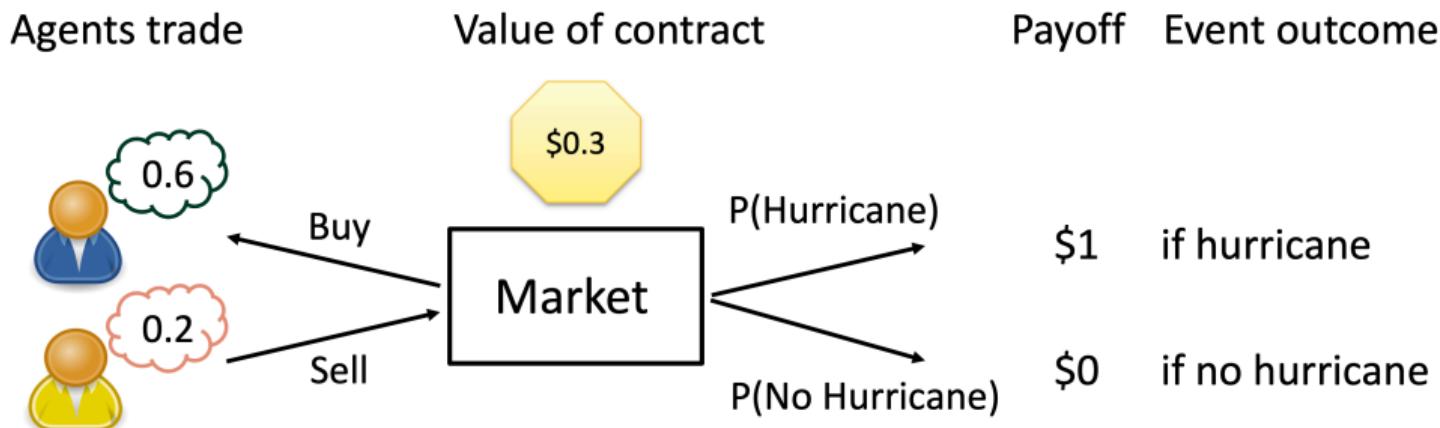
What is a prediction market?

- A prediction market is a financial market that is designed for information aggregation and prediction.
- Agents can “bet on beliefs”, by trading contracts whose payoffs (e.g., binary payoff $\phi_w : \Omega \rightarrow \{0, 1\}$) are associated with an observed outcome in the future, $w \in \Omega$.



How do prediction markets aggregate information?

- Price \approx Expectation of r.v. given all information



- Equilibrium price \approx Value of contract \approx $\Pr[\text{Event} \mid \text{All information}]$

Other forecasting methods vs. prediction market

Opinion Poll

- Sample with equally weighted inputs
- No incentive to be truthful
- Hard to be real-time

Ask Experts

- Need to identify experts
- Hard to combine information

Machine Learning

- Need historical data, assuming past and future are related
- Hard to incorporate new information

Prediction Market

- Self-selection with bet-weighted inputs
- Monetary incentive
- No need for (assumptions on) data
- Real-time with new information immediately incorporated

Current Progress

1. Proper Scoring Rules
2. Generalized Scoring Rules
3. Prediction Markets
 - 3.1 What is a prediction market?
 - Function of a prediction market
 - Prediction market designs
 - 3.2 Connection to scoring rules: Cost-function-based automated market makers (AMMs)
 - 3.3 Computational aspects of AMM designs
 - 3.4 Economic aspects of AMM designs
 - 3.5 Regulatory landscape and discussions

Financial market vs. prediction market

Financial market

- Primary: capital allocation and hedge risk
- Secondary: information aggregation

Prediction market

- Primary: information aggregation
- Secondary: hedge risk

The goals are typically mixed together.

Risk and decision making under uncertainty

- Outcomes are in money (\$): the r.v. x represents money (wealth or payoff).
- Utility of money $u(x)$: the utility an agent derives from that amount of money.

Risk and decision making under uncertainty

- Outcomes are in money (\$): the r.v. x represents money (wealth or payoff).
- Utility of money $u(x)$: the utility an agent derives from that amount of money.
- Risk attitudes
 - Risk neutral: $u(x) \sim x$
 - Risk averse (typical w/ diminishing marginal utility): u is concave, e.g., $u(x) \sim \log(x)$
 - Risk seeking: u is convex

Risk and decision making under uncertainty

- Outcomes are in money (\$): the r.v. x represents money (wealth or payoff).
- Utility of money $u(x)$: the utility an agent derives from that amount of money.
- Risk attitudes
 - Risk neutral: $u(x) \sim x$
 - Risk averse (typical w/ diminishing marginal utility): u is concave, e.g., $u(x) \sim \log(x)$
 - Risk seeking: u is convex
- Absolute risk aversion: $r_u(x) = -u''(x)/u'(x)$
 - The larger the number, the more the agent is risk averse.

Risk and decision making under uncertainty

- Outcomes are in money (\$): the r.v. x represents money (wealth or payoff).
- Utility of money $u(x)$: the utility an agent derives from that amount of money.
- Risk attitudes
 - Risk neutral: $u(x) \sim x$
 - Risk averse (typical w/ diminishing marginal utility): u is concave, e.g., $u(x) \sim \log(x)$
 - Risk seeking: u is convex
- Absolute risk aversion: $r_u(x) = -u''(x)/u'(x)$
 - The larger the number, the more the agent is risk averse.
- Expected utility: $\sum_w Pr(w)u(x_w)$

Risk attitude, hedging, and risk allocation ⁶

Example:

- I'm risk averse w/ $u(x) = \log(x)$; the insurance company is risk neutral w/ $u(x) = x$.
- I believe that my car might be destroyed by a hurricane with prob. 0.01.
- $\Omega = \{w_1, w_2\}$. w_1 : car destroyed. w_2 : car not destroyed.

⁶Example adapted from Yiling Chen's slides.

Risk attitude, hedging, and risk allocation ⁶

Example:

- I'm risk averse w/ $u(x) = \log(x)$; the insurance company is risk neutral w/ $u(x) = x$.
- I believe that my car might be destroyed by a hurricane with prob. 0.01.
- $\Omega = \{w_1, w_2\}$. w_1 : car destroyed. w_2 : car not destroyed.
- Suppose $u(w_1) = \log(10,000)$ and $u(w_2) = \log(20,000)$.
$$\mathbb{E}[u] = 0.01 \cdot \log(10,000) + 0.99 \cdot \log(20,000)$$

⁶Example adapted from Yiling Chen's slides.

Risk attitude, hedging, and risk allocation ⁶

Example:

- I'm risk averse w/ $u(x) = \log(x)$; the insurance company is risk neutral w/ $u(x) = x$.
- I believe that my car might be destroyed by a hurricane with prob. 0.01.
- $\Omega = \{w_1, w_2\}$. w_1 : car destroyed. w_2 : car not destroyed.
- Suppose $u(w_1) = \log(10,000)$ and $u(w_2) = \log(20,000)$.
$$\mathbb{E}[u] = 0.01 \cdot \log(10,000) + 0.99 \cdot \log(20,000)$$
- I will buy \$10,000 insurance for \$125
$$\mathbb{E}[u_{buy}] = 0.01 \cdot \log(19,875) + 0.99 \cdot \log(19,875) > \mathbb{E}[u]$$

⁶Example adapted from Yiling Chen's slides.

Risk attitude, hedging, and risk allocation ⁶

Example:

- I'm risk averse w/ $u(x) = \log(x)$; the insurance company is risk neutral w/ $u(x) = x$.
- I believe that my car might be destroyed by a hurricane with prob. 0.01.
- $\Omega = \{w_1, w_2\}$. w_1 : car destroyed. w_2 : car not destroyed.
- Suppose $u(w_1) = \log(10,000)$ and $u(w_2) = \log(20,000)$.
$$\mathbb{E}[u] = 0.01 \cdot \log(10,000) + 0.99 \cdot \log(20,000)$$
- I will buy \$10,000 insurance for \$125
$$\mathbb{E}[u_{buy}] = 0.01 \cdot \log(19,875) + 0.99 \cdot \log(19,875) > \mathbb{E}[u]$$
- Suppose that the insurance company also believes $Pr(\text{car destroyed}) = 0.01$
$$\mathbb{E}[u_{ins}] = 0.01 \cdot (-9,875) + 0.99 \cdot (125) > 0$$

⁶Example adapted from Yiling Chen's slides.

Risk attitude, hedging, and risk allocation ⁶

Example:

- I'm risk averse w/ $u(x) = \log(x)$; the insurance company is risk neutral w/ $u(x) = x$.
- I believe that my car might be destroyed by a hurricane with prob. 0.01.
- $\Omega = \{w_1, w_2\}$. w_1 : car destroyed. w_2 : car not destroyed.
- Suppose $u(w_1) = \log(10,000)$ and $u(w_2) = \log(20,000)$.
$$\mathbb{E}[u] = 0.01 \cdot \log(10,000) + 0.99 \cdot \log(20,000)$$
- I will buy \$10,000 insurance for \$125
$$\mathbb{E}[u_{buy}] = 0.01 \cdot \log(19,875) + 0.99 \cdot \log(19,875) > \mathbb{E}[u]$$
- Suppose that the insurance company also believes $Pr(\text{car destroyed}) = 0.01$
$$\mathbb{E}[u_{ins}] = 0.01 \cdot (-9,875) + 0.99 \cdot (125) > 0$$

The transaction allocates risk. Everyone is happy.

⁶Example adapted from Yiling Chen's slides.

Probability and speculating ⁷

Example (continued):

- Suppose that I'm risk neutral $u(x) = x$, and believe that $Pr(\text{car destroyed}) = 0.02$.
- I will buy \$10,000 insurance for \$125
The insurance is a contract: \$10,000 if car destroyed, 0 otherwise.
$$\mathbb{E}[\text{Insurance}] = 0.02 \cdot (10,000) + 0.98 \cdot (0) > \$125$$
- I get \$75 on expectation.

⁷Example adapted from Yiling Chen's slides.

Probability and speculating ⁷

Example (continued):

- Suppose that I'm risk neutral $u(x) = x$, and believe that $Pr(\text{car destroyed}) = 0.02$.
- I will buy \$10,000 insurance for \$125
The insurance is a contract: \$10,000 if car destroyed, 0 otherwise.
 $\mathbb{E}[\text{Insurance}] = 0.02 \cdot (10,000) + 0.98 \cdot (0) > \125
- I get \$75 on expectation.

The transaction speculates the insurance company.

⁷Example adapted from Yiling Chen's slides.

Probability and speculating ⁷

Example (continued):

- Suppose that I'm risk neutral $u(x) = x$, and believe that $Pr(\text{car destroyed}) = 0.02$.
- I will buy \$10,000 insurance for \$125
The insurance is a contract: \$10,000 if car destroyed, 0 otherwise.
 $\mathbb{E}[\text{Insurance}] = 0.02 \cdot (10,000) + 0.98 \cdot (0) > \125
- I get \$75 on expectation.

The transaction speculates the insurance company.

Prediction market generalize to

- arbitrary states;
- more than two parties.

⁷Example adapted from Yiling Chen's slides.

Probability and speculating ⁷

Example (continued):

- Suppose that I'm risk neutral $u(x) = x$, and believe that $Pr(\text{car destroyed}) = 0.02$.
- I will buy \$10,000 insurance for \$125
The insurance is a contract: \$10,000 if car destroyed, 0 otherwise.
 $\mathbb{E}[\text{Insurance}] = 0.02 \cdot (10,000) + 0.98 \cdot (0) > \125
- I get \$75 on expectation.

The transaction speculates the insurance company.

Prediction market generalize to

- arbitrary states;
- more than two parties.

Design market mechanisms to allow speculation and allocate risk among participants.

⁷Example adapted from Yiling Chen's slides.

Risk-neutral probability

- Subjective probability is an agent's personal judgment
Can be mixed with the agent's utility (risk attitude)

Risk-neutral probability

- Subjective probability is an agent's personal judgment
Can be mixed with the agent's utility (risk attitude)
- Risk-neutral probability: the probability that a risk-neutral agent has to have the same expected utility

$$\sum_w Pr^{rn}(w)x_w = \sum_w Pr(w)u(x_w)$$

Risk-neutral probability

- Subjective probability is an agent's personal judgment
Can be mixed with the agent's utility (risk attitude)
- Risk-neutral probability: the probability that a risk-neutral agent has to have the same expected utility

$$\sum_w Pr^{rn}(w)x_w = \sum_w Pr(w)u(x_w)$$

- Risk neutral probability is the normalized product of subjective probability and marginal utility

$$\sum_w Pr^{rn}(w) \sim Pr(w)u'(x_w)$$

1. Random variable: turn an uncertain event of interest into a random variable
 - Binary, discrete: {win, lose}, {sunny, rainy, cloudy}
 - Continuous: temperature, price, time, vote share...
2. Payoff functions
 - Arrow-Debreu: \$1 if the event happens, and \$0 otherwise
 - Index / continuous: the payoff scales with the result
 - Other forms: dividends, pari-mutuel, options
3. Payoff output
 - Real money: USD, cryptocurrency
 - Play money: virtual points for fun, reputation, etc.
 - Other forms: prize, lottery, etc.

Market design: mechanisms

- Call market
 - *Mechanism*: Orders are collected into a “batch” over a period of time and then executed at once at a *single* clearing price that maximizes the volume of trade; There are different price determination rules.
 - *Applications*: Opening price, CoW Swap, illiquid asset markets.
 - *Characteristics*: Rely on counterparties, not real-time, alleviate thin market problem.

Market design: mechanisms

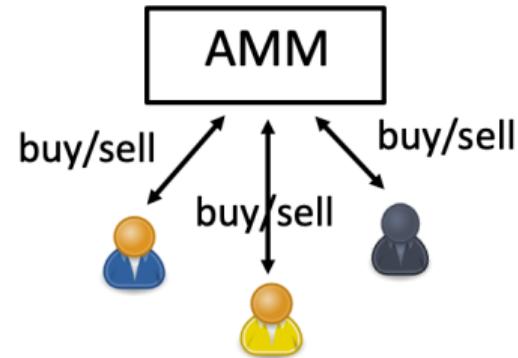
- Call market
 - *Mechanism*: Orders are collected into a “batch” over a period of time and then executed at once at a *single* clearing price that maximizes the volume of trade; There are different price determination rules.
 - *Applications*: Opening price, CoW Swap, illiquid asset markets.
 - *Characteristics*: Rely on counterparties, not real-time, alleviate thin market problem.
- Continuous double auction (CDA)
 - *Mechanism*: Buy and sell orders continuously come in and are aggregated in a central *limit order book* (CLOB) (i.e., call market w/ period $\rightarrow 0$); As $\text{bid} \geq \text{ask}$, a transaction occurs at the incumbent order price.
 - *Applications*: Most financial markets.
 - *Characteristics*: Rely on counterparties, real time, may suffer thin market problem.

Market design: mechanisms

- Call market
 - *Mechanism*: Orders are collected into a “batch” over a period of time and then executed at once at a *single* clearing price that maximizes the volume of trade; There are different price determination rules.
 - *Applications*: Opening price, CoW Swap, illiquid asset markets.
 - *Characteristics*: Rely on counterparties, not real-time, alleviate thin market problem.
- Continuous double auction (CDA)
 - *Mechanism*: Buy and sell orders continuously come in and are aggregated in a central *limit order book* (CLOB) (i.e., call market w/ period $\rightarrow 0$); As $\text{bid} \geq \text{ask}$, a transaction occurs at the incumbent order price.
 - *Applications*: Most financial markets.
 - *Characteristics*: Rely on counterparties, real time, may suffer thin market problem.
- **Automated market maker (AMM)**
 - Always willing to quote prices and offer to trade any quantity.
 - No need for counterparties, real time, improve liquidity (thus information aggregation).

Automated market maker (AMM)

- Always offer to buy or sell at some price;
How to decide the prices?
- If shares are bought, increase the price
(i.e., reflect the market belief);
How to update the prices?
- May subsidize the market for information.
Can we leverage proper scoring rules?



Current prediction market landscape

Decentralized (blockchain-based)

Characteristics: Global access, non-custodial, crypto settlement (USDC, SOL, etc.).

- **Polymarket** (Polygon)
 - *Status:* Global volume leader.
 - *Mech:* Hybrid CLOB (off-chain matching, on-chain settlement).
- **Drift Protocol** (Solana)
 - *Status:* Leading Solana Market.
 - *Mech:* Hybrid CLOB with cross-collateral.
- **Limitless** (Base)
 - *Status:* Leader on Coinbase's L2.
 - *Mech:* On-chain CLOB (short-term focus).
- **Azuro** (Gnosis/Polygon)
 - *Mech:* Liquidity pool / AMM (peer-to-peer).

Current prediction market landscape

Centralized & Regulated (US focused)

Characteristics: KYC required, bank transfers (USD), legal compliance.

- **Kalshi** (CFTC Regulated)
 - *Status:* US market leader.
 - *Mech:* Centralized exchange.
- **Fanatics Markets** (acquired Paragon Global Markets, LLC)
 - *Status:* New entrant (2025).
 - *Mech:* Consumer app backed by Crypto.com exchange.
- **PredictIt**
 - *Status:* Legacy / academic, not for profit.
 - *Mech:* Low limits, No-Action letter (2014-2022).

Alternative Model

- **Manifold**
 - *Mech:* Play money (Mana) & redeemable cash (Sweepcash).

1. Proper Scoring Rules
2. Generalized Scoring Rules
3. Prediction Markets
 - 3.1 What is a prediction market?
 - 3.2 Connection to scoring rules: Cost-function-based automated market makers (AMMs)
 - 3.3 Computational aspects of AMM designs
 - 3.4 Economic aspects of AMM designs
 - 3.5 Regulatory landscape and discussions

Incentives for trading: Leveraging scoring rules

	1 person	$n > 1$ people
Elicit belief (verification)	scoring rule	prediction market
Elicit signal (no verification)	x	peer prediction

Incentives for trading: Leveraging scoring rules

	1 person	$n > 1$ people
Elicit belief (verification)	scoring rule	prediction market
Elicit signal (no verification)	x	peer prediction

Recap:

Definition (Strictly proper scoring rule)

A scoring rule S is *strictly proper* if for all $\hat{\mathbf{p}} \neq \mathbf{p} \in \Delta_\Omega$,

$$S(\mathbf{p}, \mathbf{p}) > S(\hat{\mathbf{p}}, \mathbf{p})$$

where $S(\hat{\mathbf{p}}, \mathbf{p}) := \mathbb{E}_{w \sim \mathbf{p}}[S(\hat{\mathbf{p}}, w)]$.

Incentives for trading: Leveraging scoring rules

Myopic incentives: optimal to trade until instantaneous price $\pi = \mathbf{p}$ (agent belief)

Connect to *sequential* proper scoring rule

- Consider outcome space $w \in \Omega = \{\text{yes, no}\}$
- Initialize the market report: $\hat{\mathbf{p}}^{(0)}$ is uniform;
- Receive sequence of reports from agent 1 to n : $\hat{\mathbf{p}}^{(1)}, \hat{\mathbf{p}}^{(2)}, \dots, \hat{\mathbf{p}}^{(n)}$;
- Upon *realization* of w_k , the i -th agent pays

$$S(\hat{\mathbf{p}}^{(i-1)}, w_k) - S(\hat{\mathbf{p}}^{(i)}, w_k);$$

Incentives for trading: Leveraging scoring rules

Myopic incentives: optimal to trade until instantaneous price $\pi = \mathbf{p}$ (agent belief)

Connect to *sequential* proper scoring rule

- Consider outcome space $w \in \Omega = \{\text{yes, no}\}$
- Initialize the market report: $\hat{\mathbf{p}}^{(0)}$ is uniform;
- Receive sequence of reports from agent 1 to n : $\hat{\mathbf{p}}^{(1)}, \hat{\mathbf{p}}^{(2)}, \dots, \hat{\mathbf{p}}^{(n)}$;
- Upon *realization* of w_k , the i -th agent pays

$$S(\hat{\mathbf{p}}^{(i-1)}, w_k) - S(\hat{\mathbf{p}}^{(i)}, w_k);$$

- Take S to be any strictly proper scoring rule, it is rational to report truthfully in position i , $\hat{\mathbf{p}}^{(i)} = \mathbf{p}^{(i)}$, i.e., minimizing payment.

Incentives for trading: Leveraging scoring rules

Myopic incentives: optimal to trade until instantaneous price $\pi = \mathbf{p}$ (agent belief)

Connect to *sequential* proper scoring rule

- Consider outcome space $w \in \Omega = \{\text{yes, no}\}$
- Initialize the market report: $\hat{\mathbf{p}}^{(0)}$ is uniform;
- Receive sequence of reports from agent 1 to n : $\hat{\mathbf{p}}^{(1)}, \hat{\mathbf{p}}^{(2)}, \dots, \hat{\mathbf{p}}^{(n)}$;
- Upon *realization* of w_k , the i -th agent pays

$$S(\hat{\mathbf{p}}^{(i-1)}, w_k) - S(\hat{\mathbf{p}}^{(i)}, w_k);$$

- Take S to be any strictly proper scoring rule, it is rational to report truthfully in position i , $\hat{\mathbf{p}}^{(i)} = \mathbf{p}^{(i)}$, i.e., minimizing payment.
- The cost to market designer (w/ uniform prior)

$$S(\hat{\mathbf{p}}^{(n)}, w_k) - S(\hat{\mathbf{p}}^{(0)}, w_k) \leq b \ln(1) - b \ln(1/n) = b \ln(n).$$

Market scoring rules [Hanson, 2003, Hanson, 2007]

- Use a proper scoring rule;
- A trader can change the current probability estimate to a new one;
- The trader pays (receives) the scoring rule payment according to the old probability estimate and the outcome.

Incentives for trading: Leveraging scoring rules

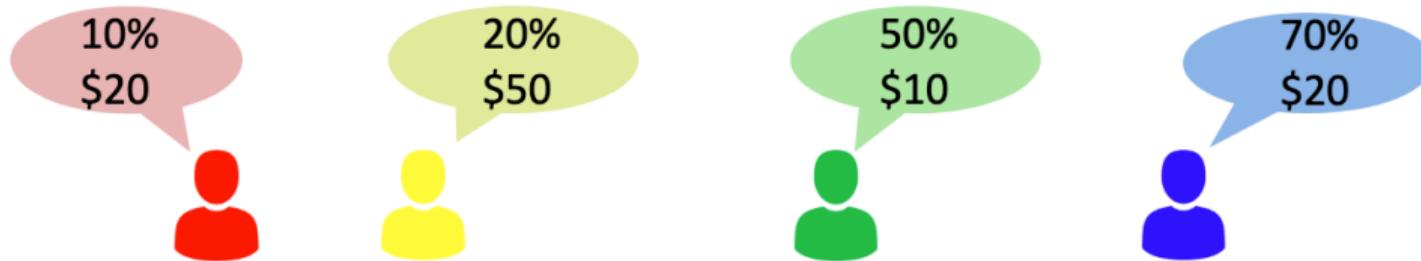
Wagering mechanisms

- Each agent reports a forecast \hat{p}_i and a wager δ_i ;
- The mechanism redistributes wagers upon realization of $w \in \Omega$.

Incentives for trading: Leveraging scoring rules

Wagering mechanisms

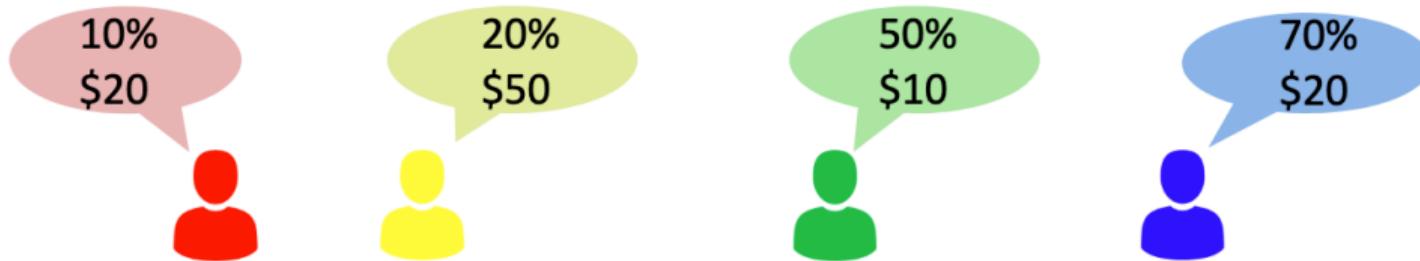
- Each agent reports a forecast \hat{p}_i and a wager δ_i ;
- The mechanism redistributes wagers upon realization of $w \in \Omega$.
- Example: Will S&P price increase tomorrow?



Incentives for trading: Leveraging scoring rules

Wagering mechanisms

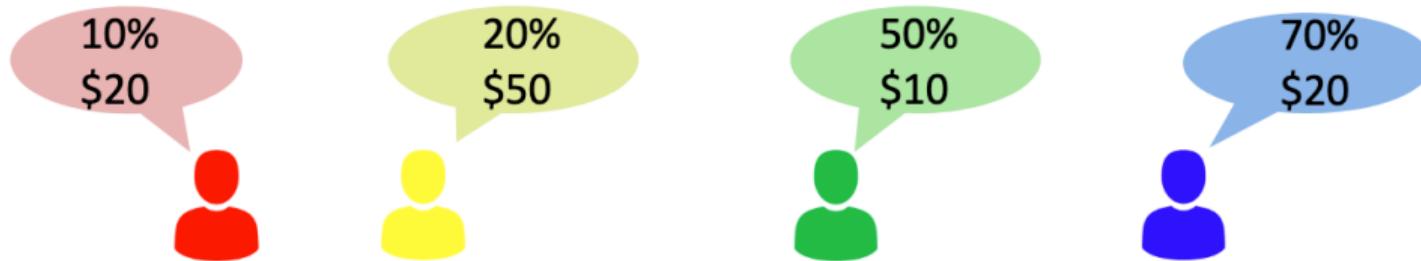
- Each agent reports a forecast \hat{p}_i and a wager δ_i ;
- The mechanism redistributes wagers upon realization of $w \in \Omega$.
According to scoring rules!
- Example: Will S&P price increase tomorrow?



Incentives for trading: Leveraging scoring rules

Wagering mechanisms

- Each agent reports a forecast \hat{p}_i and a wager δ_i ;
- The mechanism redistributes wagers upon realization of $w \in \Omega$.
According to scoring rules!
- Example: Will S&P price increase tomorrow?



- Weighted-score wagering mechanism [Lambert et al., 2015]

$$\pi_i(\mathbf{p}, \boldsymbol{\delta}, w) = \delta_i \left(1 + S(p_i, w) - \frac{\sum_{j \neq i} \delta_j S(p_j, w)}{\sum_{j \neq i} \delta_j} \right), \quad r_i(\mathbf{p}, \boldsymbol{\delta}, w) = \pi_i(\mathbf{p}, \boldsymbol{\delta}, w) - \delta_i$$

Incentives for trading: Leveraging scoring rules

Wagering mechanisms

- Each agent reports a forecast \hat{p}_i and a wager δ_i ;
- The mechanism redistributes wagers upon realization of $w \in \Omega$.

According to scoring rules! Example: Will S&P price increase tomorrow?

Cost-function-based AMM

Assume outcome space of n possible outcomes.

Cost-function-based AMMs

- Maintain the market state, $\mathbf{q} = (q_1, \dots, q_n)$, i.e., shares sold for each security (outcome i);

	Yes	No
Initialization	0	0
Buy 2 for Yes	2	0
Buy 5 for Yes	7	0
Buy 2 for No	7	2
Sell 1 for Yes	6	2

Cost-function-based AMM

Assume outcome space of n possible outcomes.

Cost-function-based AMMs

- Maintain the market state, $\mathbf{q} = (q_1, \dots, q_n)$, i.e., shares sold for each security (outcome i);
- Use a convex, differentiable cost function $C : \mathbb{R}^{|\Omega|} \rightarrow \mathbb{R}$;

	Yes	No
Initialization	0	0
Buy 2 for Yes	2	0
Buy 5 for Yes	7	0
Buy 2 for No	7	2
Sell 1 for Yes	6	2

Cost-function-based AMM

Assume outcome space of n possible outcomes.

Cost-function-based AMMs

- Maintain the market state, $\mathbf{q} = (q_1, \dots, q_n)$, i.e., shares sold for each security (outcome i);
- Use a convex, differentiable cost function $C : \mathbb{R}^{|\Omega|} \rightarrow \mathbb{R}$;
- **Quote** instantaneous price as

$$p_i(\mathbf{q}) = \partial C(\mathbf{q}) / \partial q_i;$$

	Yes	No
Initialization	0	0
Buy 2 for Yes	2	0
Buy 5 for Yes	7	0
Buy 2 for No	7	2
Sell 1 for Yes	6	2

Cost-function-based AMM

Assume outcome space of n possible outcomes.

Cost-function-based AMMs

- Maintain the market state, $\mathbf{q} = (q_1, \dots, q_n)$, i.e., shares sold for each security (outcome i);
- Use a convex, differentiable cost function $C : \mathbb{R}^{|\Omega|} \rightarrow \mathbb{R}$;
- **Quote** instantaneous price as

$$p_i(\mathbf{q}) = \partial C(\mathbf{q}) / \partial q_i;$$

- **Charge** a trader who buys a bundle $\boldsymbol{\delta} \in \mathbb{R}^{|\Omega|}$ of contracts by $C(\mathbf{q} + \boldsymbol{\delta}) - C(\mathbf{q})$;

	Yes	No
Initialization	0	0
Buy 2 for Yes	2	0
Buy 5 for Yes	7	0
Buy 2 for No	7	2
Sell 1 for Yes	6	2

Cost-function-based AMM

Assume outcome space of n possible outcomes.

Cost-function-based AMMs

- Maintain the market state, $\mathbf{q} = (q_1, \dots, q_n)$, i.e., shares sold for each security (outcome i);
- Use a convex, differentiable cost function $C : \mathbb{R}^{|\Omega|} \rightarrow \mathbb{R}$;
- **Quote** instantaneous price as

$$p_i(\mathbf{q}) = \partial C(\mathbf{q}) / \partial q_i;$$

- **Charge** a trader who buys a bundle $\boldsymbol{\delta} \in \mathbb{R}^{|\Omega|}$ of contracts by $C(\mathbf{q} + \boldsymbol{\delta}) - C(\mathbf{q})$;
- **Update** market state after each trade:
$$\mathbf{q} \leftarrow \mathbf{q} + \boldsymbol{\delta}.$$

	Yes	No
Initialization	0	0
Buy 2 for Yes	2	0
Buy 5 for Yes	7	0
Buy 2 for No	7	2
Sell 1 for Yes	6	2

Some desirable properties for AMMs

- No “round-trip” arbitrage
- Prices nonnegative, sum to one (i.e., probability)
- Responsiveness
- Liquidity (i.e., relatively small price change after a small trade)
- Bounded budget or loss to AMM
- Individual rationality
- Expressiveness (i.e., allow traders to bet on any possible outcome)
- Computational complexity

Logarithmic market scoring rule (LMSR)

Logarithmic market scoring rule (LMSR) AMMs

- Use cost functions:

$$C(\mathbf{q}) = b \log\left(\sum_i e^{q_i/b}\right),$$

where b is called the liquidity parameter;

- Quote instantaneous prices:

$$p_i(\mathbf{q}) = \frac{e^{q_i/b}}{\sum_j e^{q_j/b}};$$

- Charge a trader who buys a bundle $\delta \in \mathbb{R}^{|\Omega|}$ of contracts by $C(\mathbf{q} + \delta) - C(\mathbf{q})$;
- Update market state after each trade: $\mathbf{q} \leftarrow \mathbf{q} + \delta$.

Some desirable properties for AMMs

LMSR AMMs satisfy

- No “round-trip” arbitrage
- Prices nonnegative, sum to one (i.e., probability)
- Responsiveness
- Liquidity (i.e., relatively small price change after a small trade)
- Bounded budget or loss to AMM
- Individual rationality

Example: LMSR AMM

A prediction market: *Will a hurricane make landfall in Florida in 2026?*

Assume an LMSR AMM with $b = 1$, so $C(\mathbf{q}) = \ln(e^{q_0} + e^{q_1})$ and $S(\mathbf{p}, w_i) = \ln(p_i)$

	Yes	No	Payment	$\pi(\text{Yes})$	$\pi(\text{No})$	Payment Yes	Payment No
Initialization	0	0	–	0.5	0.5	–	–
Buy 1 for Yes	1	0	0.62 $\ln(e^1 + e^0)$ $-\ln(e^0 + e^0)$	0.73 $e^1/(e^1 + e^0)$	0.27	-0.38 $\ln(0.5) -$ $\ln(0.73)$	0.62 $\ln(0.5) -$ $\ln(0.27)$
Buy 2 for Yes	3	0	1.73 $\ln(e^3 + e^0)$ $-\ln(e^1 + e^0)$	0.95 $e^3/(e^3 + e^0)$	0.05	-0.26 $\ln(0.73) -$ $\ln(0.95)$	1.73 $\ln(0.27) -$ $\ln(0.05)$
Buy 1 for No	3	1	0.08 $\ln(e^3 + e^1)$ $-\ln(e^3 + e^0)$	0.88 $e^3/(e^3 + e^1)$	0.12	0.08 $\ln(0.95) -$ $\ln(0.88)$	-0.92 $\ln(0.05) -$ $\ln(0.12)$

Other market scoring rule AMMs

Quadratic market scoring rule (QMSR) AMMs (derived from the Brier scoring rule)

- Use cost functions:

$$C(\mathbf{q}) = \frac{\sum_{i=1}^n q_i}{n} + \frac{\sum_{i=1}^n q_i^2}{4b} - \frac{(\sum_{i=1}^n q_i)^2}{4bn} - \frac{b}{n},$$

where $b > 0$ is the liquidity parameter.

- Quote instantaneous prices:

$$p_i(\mathbf{q}) = \frac{1}{n} + \frac{q_i}{2b} - \frac{\sum_{j=1}^n q_j}{2nb}$$

Other market scoring rule AMMs: Decentralized exchange

Constant function market maker (CFMM) for n assets maintains

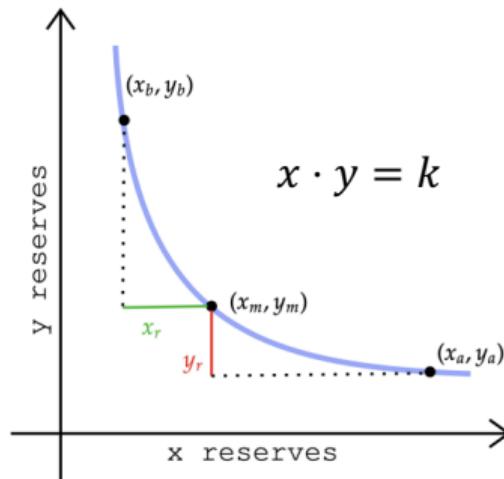
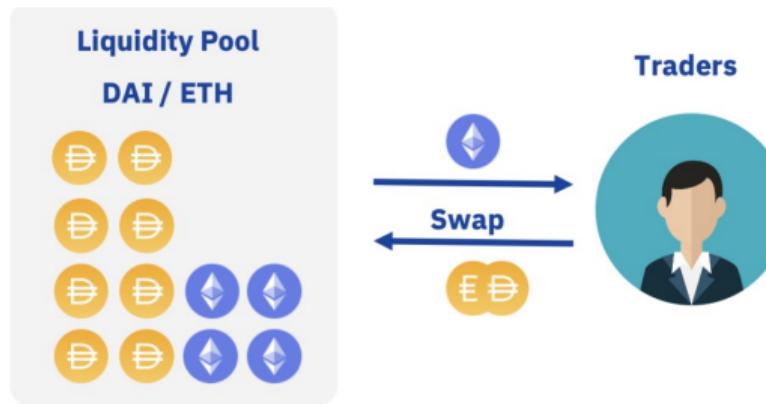
- A reserve of available assets $\mathbf{q} \in \mathbb{R}^n$;
- A trading function $\phi : \mathbb{R}^n \rightarrow \mathbb{R}$ that is concave and increasing;
- A trade or swap $\boldsymbol{\delta} \in \mathbb{R}^n$ following $\phi(\mathbf{q} + \boldsymbol{\delta}) = \phi(\mathbf{q})$.

Other market scoring rule AMMs: Decentralized exchange

Constant function market maker (CFMM) for n assets maintains

- A reserve of available assets $\mathbf{q} \in \mathbb{R}^n$;
- A trading function $\phi : \mathbb{R}^n \rightarrow \mathbb{R}$ that is concave and increasing;
- A trade or swap $\boldsymbol{\delta} \in \mathbb{R}^n$ following $\phi(\mathbf{q} + \boldsymbol{\delta}) = \phi(\mathbf{q})$.

Example: Constant product market maker (CPMM) employed by Uniswap, Balancer, etc.



CFMMs \leftrightarrow prediction markets

CFMMs

- Trades: assets \leftrightarrow assets
- AMM: providing liquidity & facilitating swaps

Prediction markets

- Trades: securities \leftrightarrow cash
- AMM: information elicitation & aggregation

CFMMs \Leftrightarrow prediction markets

CFMMs

- Trades: assets \leftrightarrow assets
- AMM: providing liquidity & facilitating swaps

Prediction markets

- Trades: securities \leftrightarrow cash
- AMM: information elicitation & aggregation

Theorem [Frongillo et al., 2024]

CFMMs and Cost-function market makers are equivalent (i.e. have same available trades for a given history), via following maps:

$$\psi_1 : \phi \mapsto C, \text{ where } C(q) := \inf\{c \in \mathbb{R} \mid \phi(c \cdot 1 - q) \geq \phi(q_0)\}$$

$$\psi_2 : C \mapsto \phi, \text{ where } \phi(q) := -C(-q) .$$

CFMMs \Leftrightarrow prediction markets

CFMMs

- Trades: assets \leftrightarrow assets
- AMM: providing liquidity & facilitating swaps

Prediction markets

- Trades: securities \leftrightarrow cash
- AMM: information elicitation & aggregation

Theorem [Frongillo et al., 2024]

CFMMs and **Cost-function market makers** are equivalent (i.e. have same available trades for a given history), via following maps:

$$\psi_1 : \phi \mapsto C, \text{ where } C(q) := \inf\{c \in \mathbb{R} \mid \phi(c \cdot 1 - q) \geq \phi(q_0)\}$$

$$\psi_2 : C \mapsto \phi, \text{ where } \phi(q) := -C(-q) .$$

Intuition: A prediction market of n securities is a market of $n + 1$ assets (securities & cash). A *cashless prediction market* replaces any \$1 cash payment with one of each security / asset, which is a CFMM.

Example: CPMMs \Leftrightarrow cost-function AMM

- The cost function equivalent of CPMM (i.e., $\phi(\mathbf{q}) = \sqrt{q_1 \cdot q_2} = k$) is

$$C_k(\mathbf{q}) = -k + \frac{1}{2} \left(q_1 + q_2 + \sqrt{4k^2 + (q_1 - q_2)^2} \right);$$

Example: CPMMs \Leftrightarrow cost-function AMM

- The cost function equivalent of CPMM (i.e., $\phi(\mathbf{q}) = \sqrt{q_1 \cdot q_2} = k$) is

$$C_k(\mathbf{q}) = -k + \frac{1}{2} \left(q_1 + q_2 + \sqrt{4k^2 + (q_1 - q_2)^2} \right);$$

- The cost function is also the implicit function of a constant-log-utility market maker [Chen and Pennock, 2012] with utility function, $u(x) = \log(k + x)$ with $k > 0$;

Example: CPMMs \Leftrightarrow cost-function AMM

- The cost function equivalent of CPMM (i.e., $\phi(\mathbf{q}) = \sqrt{q_1 \cdot q_2} = k$) is

$$C_k(\mathbf{q}) = -k + \frac{1}{2} \left(q_1 + q_2 + \sqrt{4k^2 + (q_1 - q_2)^2} \right);$$

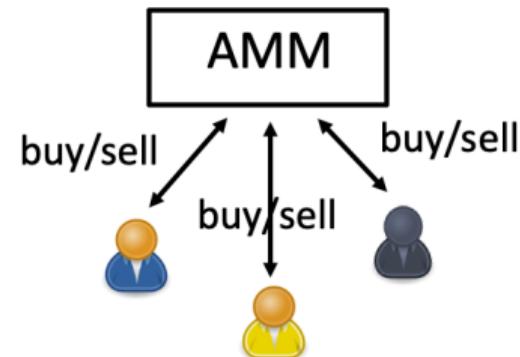
- The cost function is also the implicit function of a constant-log-utility market maker [Chen and Pennock, 2012] with utility function, $u(x) = \log(k + x)$ with $k > 0$;
- The corresponding proper scoring rule is

$$S_k(\mathbf{p}, w_i) = -k \sqrt{\frac{1 - p_i}{p_i}}$$

Boosting loss scoring rule [Buja et al., 2005].

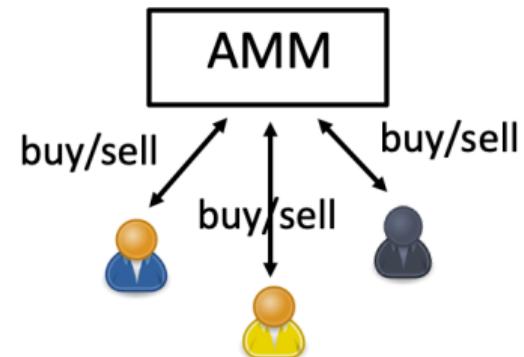
Design AMMs as online algorithms

- Given a set of outcomes Ω , a cost function C , and initial market state $\mathbf{q}^{(0)}$, in each round t :
 1. Price(i): return price of outcome i , i.e., $p_i(\mathbf{q}^{(t)})$;
 2. Cost(i, s) for $s \in \mathbb{R}$: return the cost of buying s shares of outcome i , i.e., $C(\mathbf{q}^{(t)} + s \cdot \mathbf{1}_i) - C(\mathbf{q}^{(t)})$;
 3. Buy(i, s): charge Cost(i, s) and update $\mathbf{q}^{(t+1)} \leftarrow \mathbf{q}^{(t)} + s \cdot \mathbf{1}_i$



Design AMMs as online algorithms

- Given a set of outcomes Ω , a cost function C , and initial market state $\mathbf{q}^{(0)}$, in each round t :
 1. Price(i): return price of outcome i , i.e., $p_i(\mathbf{q}^{(t)})$;
 2. Cost(i, s) for $s \in \mathbb{R}$: return the cost of buying s shares of outcome i , i.e., $C(\mathbf{q}^{(t)} + s \cdot \mathbf{1}_i) - C(\mathbf{q}^{(t)})$;
 3. Buy(i, s): charge Cost(i, s) and update $\mathbf{q}^{(t+1)} \leftarrow \mathbf{q}^{(t)} + s \cdot \mathbf{1}_i$;

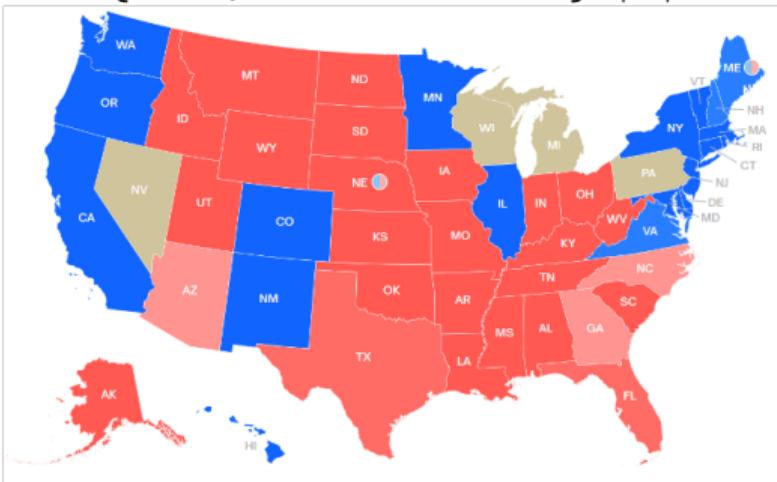


Goal: Design an algorithm or data structure to support above market operation efficiently.

1. Proper Scoring Rules
2. Generalized Scoring Rules
3. Prediction Markets
 - 3.1 What is a prediction market?
 - 3.2 Connection to scoring rules: Cost-function-based automated market makers (AMMs)
 - 3.3 Computational aspects of AMM designs
 - 3.4 Economic aspects of AMM designs
 - 3.5 Regulatory landscape and discussions

Prediction market: from binary to large outcome space

$\Omega = \{\text{Trump wins, Harris wins}\}; |\Omega| = 2.$

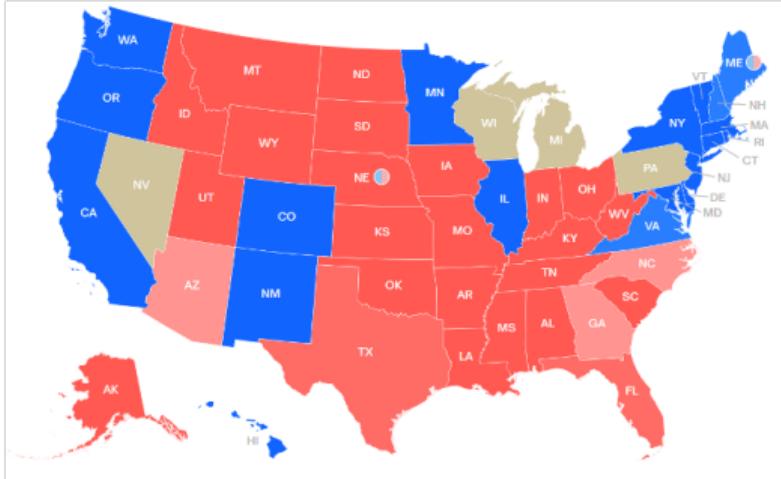


$\Omega = \{\text{Each state's winner}\}; |\Omega| = 2^{50}.$

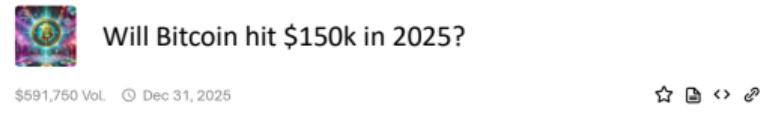
Prediction market: from binary to large outcome space



$\Omega = \{\text{Trump wins, Harris wins}\}; |\Omega| = 2.$



$\Omega = \{\text{Each state's winner}\}; |\Omega| = 2^{50}.$



$\Omega = \{\text{Yes, No}\}; |\Omega| = 2.$

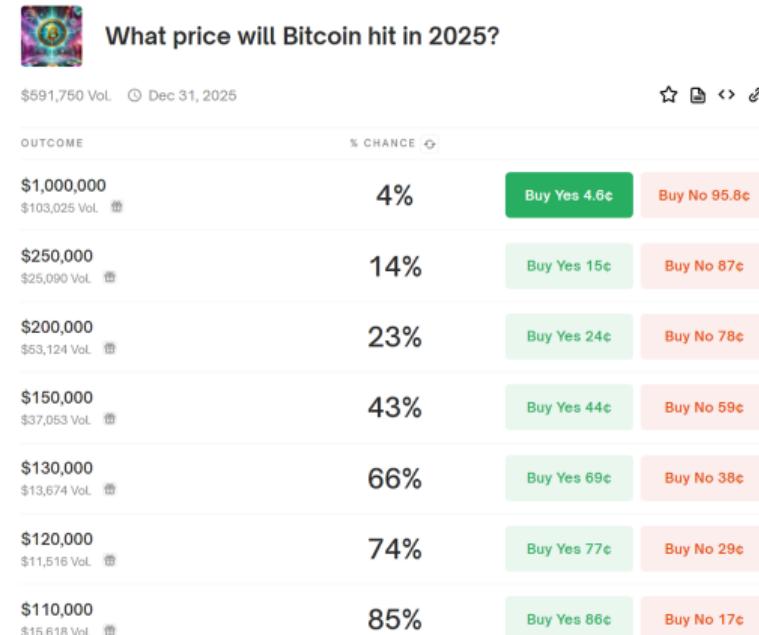
$\Omega = \mathbb{R}; |\Omega| = \infty.$

Traditional market implementation

- Predetermined discretizations, independent markets

May suffer

- Thin market problem
- Logic inconsistency
- Arbitrage opportunities



Traditional market implementation

- Predetermined discretizations, independent markets

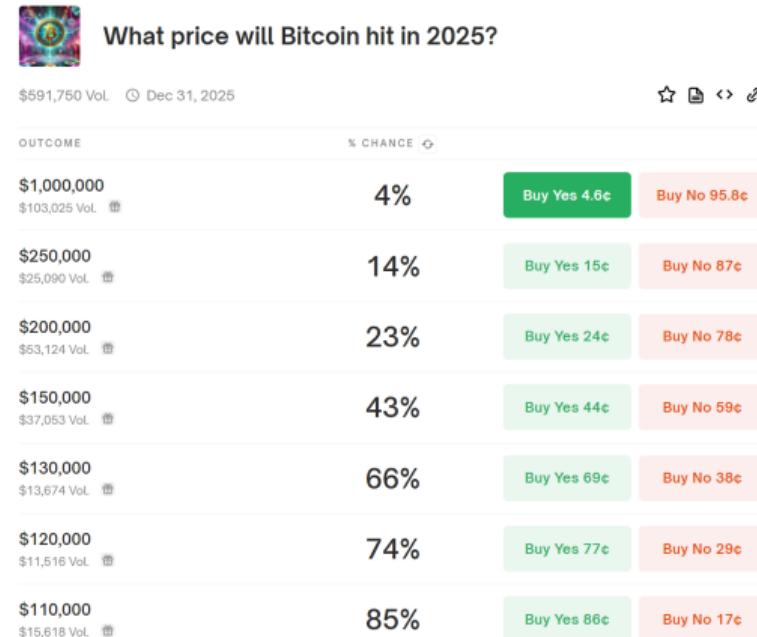
May suffer

- Thin market problem
- Logic inconsistency
- Arbitrage opportunities

- How about some combinatorial prediction market for large Ω ?

May need to balance

- Expressiveness
- Computational complexity
- Worst-case loss / liquidity



Combinatorial prediction market

- Ω : A large outcome space with $n = |\Omega|$ possible outcomes;

Example:

1. $w_0 = \text{FL: Democrats \& PA: Democrats}$
2. $w_1 = \text{FL: Democrats \& PA: Republicans}$
3. $w_2 = \text{FL: Republicans \& PA: Democrats}$
4. $w_3 = \text{FL: Republicans \& PA: Republicans}$

- $\mathcal{F} \subseteq 2^\Omega$: A set system that is a collection of subsets of Ω .

Combinatorial prediction market

- Ω : A large outcome space with $n = |\Omega|$ possible outcomes;

Example:

1. $w_0 = \text{FL: Democrats \& PA: Democrats}$
2. $w_1 = \text{FL: Democrats \& PA: Republicans}$
3. $w_2 = \text{FL: Republicans \& PA: Democrats}$
4. $w_3 = \text{FL: Republicans \& PA: Republicans}$

- $\mathcal{F} \subseteq 2^\Omega$: A set system that is a collection of subsets of Ω .

- A prediction market (Ω, \mathcal{F}) offers combinatorial security that

- Specifies an event $E \in \mathcal{F}$;

Example: “Republicans win Pennsylvania” (i.e., $E = \{w_1, w_3\}$), “The state outcomes differ” (i.e., $E = \{w_2, w_3\}$).

- Pays \$1 if the event E happens.

Combinatorial prediction market

- Ω : A large outcome space with $n = |\Omega|$ possible outcomes;

Example:

1. $w_0 = \text{FL: Democrats \& PA: Democrats}$
2. $w_1 = \text{FL: Democrats \& PA: Republicans}$
3. $w_2 = \text{FL: Republicans \& PA: Democrats}$
4. $w_3 = \text{FL: Republicans \& PA: Republicans}$

- $\mathcal{F} \subseteq 2^\Omega$: A set system that is a collection of subsets of Ω .

- A prediction market (Ω, \mathcal{F}) offers combinatorial security that

- Specifies an event $E \in \mathcal{F}$;

Example: “Republicans win Pennsylvania” (i.e., $E = \{w_1, w_3\}$), “The state outcomes differ” (i.e., $E = \{w_2, w_3\}$).

- Pays \$1 if the event E happens.

- Examples of popular set systems.

Example: Interval Security

- \mathcal{F} : A collection of all intervals [Dudík et al., 2021]
- A prediction market (Ω, \mathcal{F}) offers combinatorial security that specifies
 - An interval
 - Pays \$1 if the outcome falls in the interval
 - Expressiveness: precision level

When will the FDA approve a COVID-19 vaccine?

Q1, 2021 (or before)	1¢
Q2, 2021	27¢
Q3, 2021	55¢
Q4, 2021 (or later)	17¢

Example: Interval Security

- \mathcal{F} : A collection of all intervals
[Dudík et al., 2021]
- A prediction market (Ω, \mathcal{F}) offers combinatorial security that specifies
 - An interval
 - Pays \$1 if the outcome falls in the interval
 - Expressiveness: precision level
- d -dimensional orthogonal security
Example: “NVDA $\in [180, 190]$ & GOOGL $\in [320, 330]$ ”

When will the FDA approve a COVID-19 vaccine?

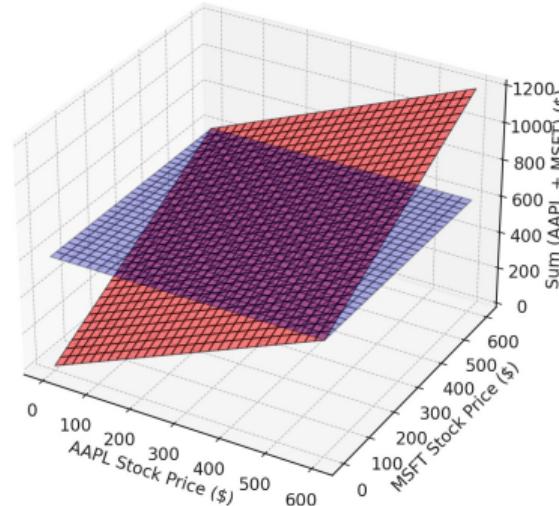
Q1, 2021 (or before)	1¢
Q2, 2021	27¢
Q3, 2021	55¢
Q4, 2021 (or later)	17¢

Example: Hyperplane Security

- $\Omega \subset \mathbb{R}^d$
- \mathcal{F} : A collection of half-space associated with hyperplanes [Wang et al., 2021]

$$E_{\beta, \beta_0} = \{w \in \Omega : \beta^T w + \beta_0 \geq 0\}$$

- A prediction market (Ω, \mathcal{F}) offers combinatorial security that specifies
 - A half-space
 - Pays \$1 if the outcome falls in the half-space



$$\text{APPL} + \text{MSFT} \geq 600$$

Example: Top L Candidates

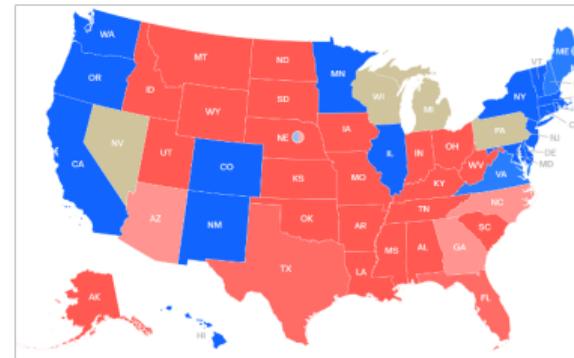
- \mathcal{F} : A subset of L candidates among K candidates
- A prediction market (Ω, \mathcal{F}) offers combinatorial security that specifies
 - A set of L candidates
 - Pays \$1 if the top L candidates are from the set

Example: Permutations

- \mathcal{F} : A collection of pair comparisons among K candidates [Chen et al., 2007]
- A prediction market (Ω, \mathcal{F}) offers combinatorial security that specifies
 - A pair (a, b) where candidate a ranks higher than candidate b
 - Pays \$1 if the pair comparison turns out to be true

Example: Boolean Betting

- \mathcal{F} : Any conjunction of event outcomes [Chen et al., 2008]
- A prediction market (Ω, \mathcal{F}) offers combinatorial security that specifies
 - A Boolean formula
 - Pays \$1 if the Boolean formula is satisfied by the final outcome



CPMM: Swap trade for baskets of assets

- Given $\mathbf{q} \in \mathbb{R}^n$, some sets $E, E' \subseteq [n]$, and a CPMM $\phi : \mathbb{R}^n \rightarrow \mathbb{R}$, we want to support

A swap trade for baskets $\delta = \mathbf{1}_E - s \cdot \mathbf{1}_{E'} \in \mathbb{R}^n$.

- A valid s satisfies

$$\prod_{j \in E'} (q_j - s) = \frac{\prod_{i \in E} q_i \prod_{j \in E'} q_j}{\prod_{i \in E} (q_i + 1)}$$

Designing combinatorial prediction market

- Ω : A large outcome space with $n = |\Omega|$ possible outcomes
- $\mathcal{F} \subseteq 2^{|\Omega|}$: A set system that is a collection of subsets of Ω
- An AMM on (Ω, \mathcal{F}) that can support
 - $\text{Price}(E)$: return instantaneous price of any specifies security $E \in \mathcal{F}$;
 - $\text{Cost}(E, s)$: return the cost of buying s shares of security on E ;
 - $\text{Buy}(E, s)$: update the market state after buying s shares of security on E , and return $\text{Cost}(E, s)$.

Designing combinatorial prediction market

- Ω : A large outcome space with $n = |\Omega|$ possible outcomes
- $\mathcal{F} \subseteq 2^{|\Omega|}$: A set system that is a collection of subsets of Ω
- An AMM on (Ω, \mathcal{F}) that can support
 - $\text{Price}(E)$: return instantaneous price of any specifies security $E \in \mathcal{F}$;
 - $\text{Cost}(E, s)$: return the cost of buying s shares of security on E ;
 - $\text{Buy}(E, s)$: update the market state after buying s shares of security on E , and return $\text{Cost}(E, s)$.
- *Can we design efficient algorithms for a prediction market that offers combinatorial security on (Ω, \mathcal{F}) and uses a cost function C ?*

Designing combinatorial prediction market

- Ω : A large outcome space with $n = |\Omega|$ possible outcomes
- $\mathcal{F} \subseteq 2^{|\Omega|}$: A set system that is a collection of subsets of Ω
- An AMM on (Ω, \mathcal{F}) that can support
 - $\text{Price}(E)$: return instantaneous price of any specifies security $E \in \mathcal{F}$;
 - $\text{Cost}(E, s)$: return the cost of buying s shares of security on E ;
 - $\text{Buy}(E, s)$: update the market state after buying s shares of security on E , and return $\text{Cost}(E, s)$.
- *Can we design efficient algorithms for a prediction market that offers combinatorial security on (Ω, \mathcal{F}) and uses a cost function C ?*
- AMM for combinatorial markets = Range query range update problem
[Hossain et al., 2025]

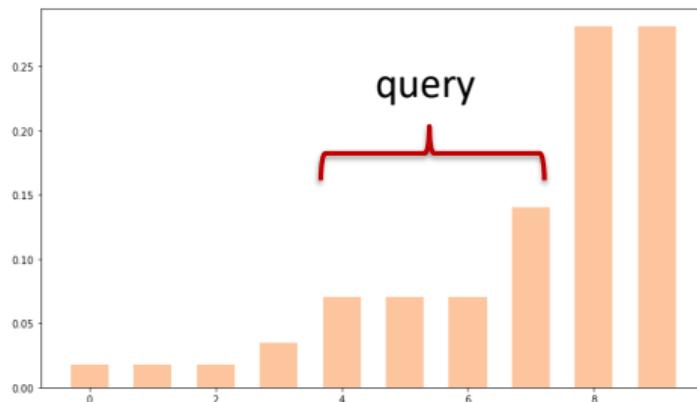
Range query range update (RQRU)

Given (Ω, \mathcal{F}) and initial weights $Q^{(0)} : \Omega \rightarrow \mathbb{R}_+$, RQRU performs a sequence of operations for any $E \in \mathcal{F}$ and $S \in \mathbb{R}_+$:

Range query range update (RQRU)

Given (Ω, \mathcal{F}) and initial weights $Q^{(0)} : \Omega \rightarrow \mathbb{R}_+$, RQRU performs a sequence of operations for any $E \in \mathcal{F}$ and $S \in \mathbb{R}_+$:

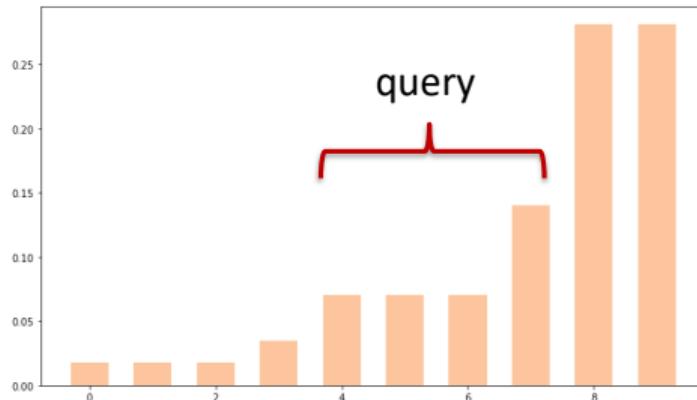
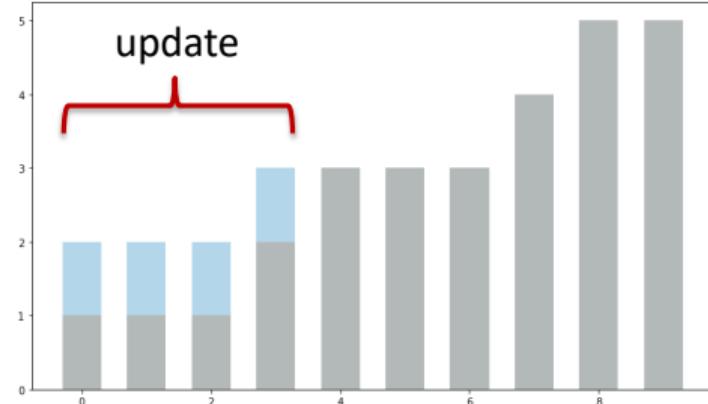
- $\text{query}(E)$: return the total weight of a range E , $\sum_{w \in E} Q(w)$;



Range query range update (RQRU)

Given (Ω, \mathcal{F}) and initial weights $Q^{(0)} : \Omega \rightarrow \mathbb{R}_+$, RQRU performs a sequence of operations for any $E \in \mathcal{F}$ and $S \in \mathbb{R}_+$:

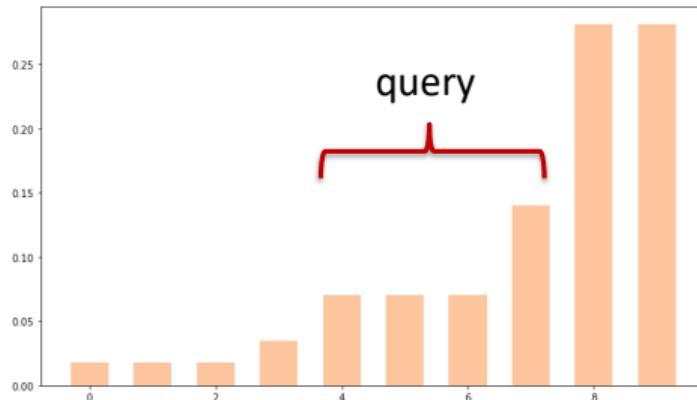
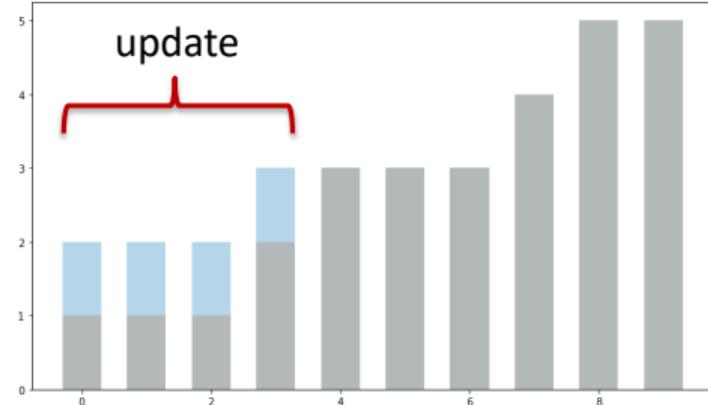
- $\text{query}(E)$: return the total weight of a range E , $\sum_{w \in E} Q(w)$;
- $\text{update}(E, S)$: update $Q(w) \leftarrow \begin{cases} S \cdot Q(w) & \text{if } w \in E \\ Q(w) & \text{otherwise} \end{cases}$



Range query range update (RQRU)

Given (Ω, \mathcal{F}) and initial weights $Q^{(0)} : \Omega \rightarrow \mathbb{R}_+$, RQRU performs a sequence of operations for any $E \in \mathcal{F}$ and $S \in \mathbb{R}_+$:

- $\text{query}(E)$: return the total weight of a range E , $\sum_{w \in E} Q(w)$;
- $\text{update}(E, S)$: update $Q(w) \leftarrow \begin{cases} S \cdot Q(w) & \text{if } w \in E \\ Q(w) & \text{otherwise} \end{cases}$
- We refer to this as $(+, \cdot)$ -RQRU



LMSR AMM $\Leftrightarrow (+, \cdot)$ -RQRU

Given combinatorial securities in \mathcal{F} , a security specifies an event $E \in \mathcal{F}$ and pays \$1 if it happens.

LMSR AMM with $C(\mathbf{q}) = \log(\sum_{w \in \Omega} e^{q_w})$ and initial market states $\mathbf{q}^{(0)}$ supports ⁸

- Price(E): return the price of event E , i.e.,

$$\frac{\sum_{w \in E} e^{q_w}}{\sum_{w \in \Omega} e^{q_w}};$$

- Buy(E, s): update market state $\mathbf{q} \leftarrow \mathbf{q} + s \cdot \mathbf{1}_E$, and calculate the cost of buying

$$C(\mathbf{q} + s \cdot \mathbf{1}_E) - C(\mathbf{q}).$$

⁸We assume $b = 1$ for simplicity.

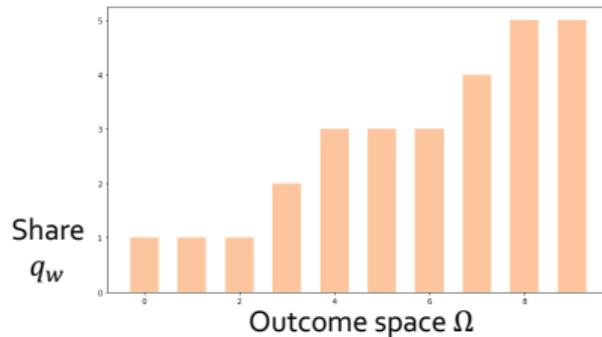
LMSR AMM $\Leftrightarrow (+, \cdot)$ -RQRU: Price = Query

Given combinatorial securities in \mathcal{F} , a security specifies an event $E \in \mathcal{F}$ and pays \$1 if it happens.

LMSR AMM with $C(\mathbf{q}) = \log(\sum_{w \in \Omega} e^{q_w})$ and initial market states $\mathbf{q}^{(0)}$ supports

- Price(E): return the price of event E , i.e.,

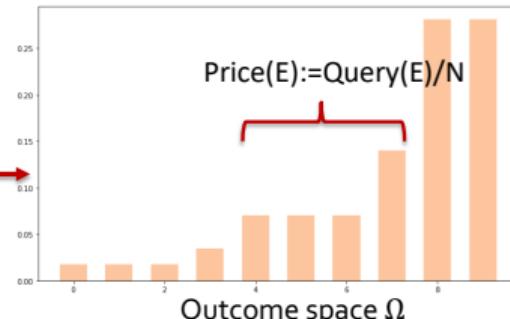
$$\frac{\sum_{w \in E} e^{q_w}}{\sum_{w \in \Omega} e^{q_w}};$$



$$Q^{(t)}(w) := e^{q_w^{(t)}}$$
$$N^{(t)} := \sum Q^{(t)}(w) = \sum_{w \in \Omega} e^{q_w^{(t)}}$$

Price $Q(w)/N$

A red arrow points from the equation $N^{(t)} := \sum Q^{(t)}(w) = \sum_{w \in \Omega} e^{q_w^{(t)}}$ to the red line in the bar chart.

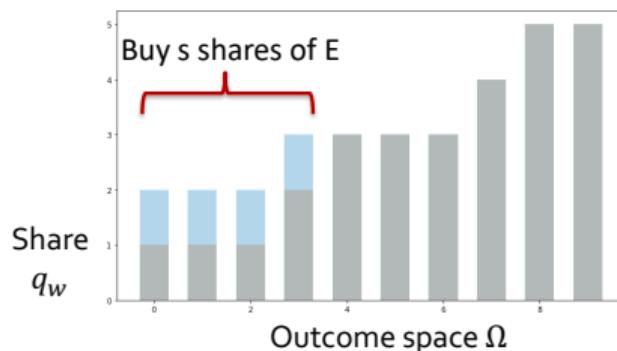


LMSR AMM $\Leftrightarrow (+, \cdot)$ -RQRU: Buy = Update

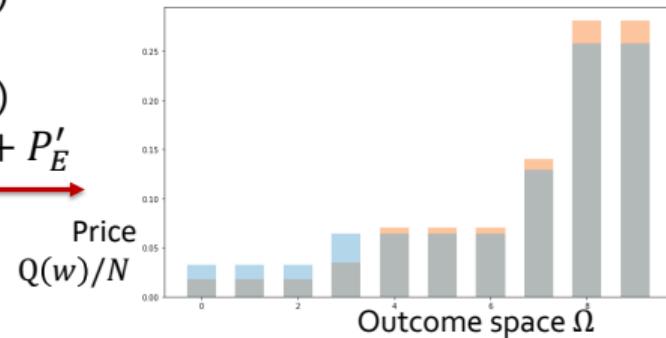
LMSR AMM with $C(\mathbf{q}) = \log(\sum_{w \in \Omega} e^{q_w})$ and initial market states $\mathbf{q}^{(0)}$ supports

- Buy(E, s): update market state $\mathbf{q} \leftarrow \mathbf{q} + s \cdot \mathbf{1}_E$, and calculate the cost of buying

$$C(\mathbf{q} + s \cdot \mathbf{1}_E) - C(\mathbf{q}).$$



1. $P_E := \text{Query}(E)$
2. $\text{Update}(E, e^s)$
3. $P'_E := \text{Query}(E)$
4. $N \leftarrow N - P_E + P'_E$

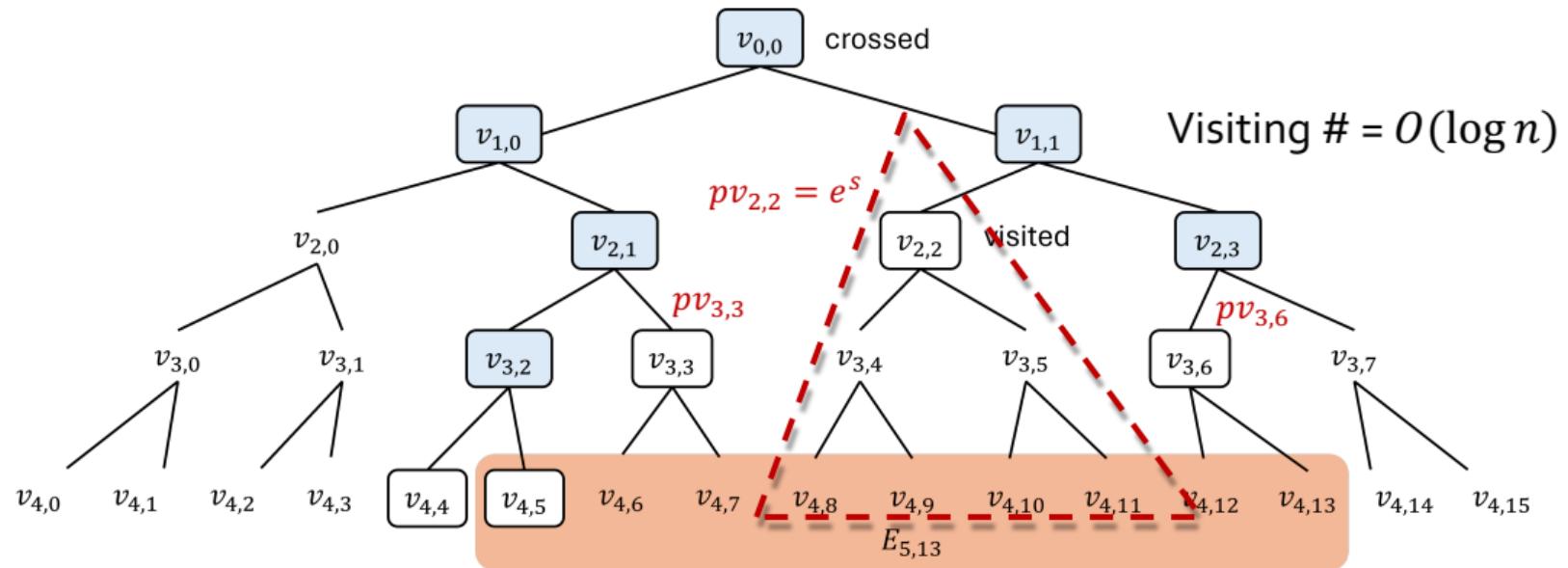


Leveraging the connection, we can now use tools from computational geometry to

- Design efficient partition-tree based LMSR on some \mathcal{F} (e.g., interval, d-orthogonal, hyperplane, top L candidates);
- Provide hardness results for some other \mathcal{F} (e.g., pairing, Boolean betting).

Example: A partition tree for interval securities

A partition tree with lazy weight propagation (updating node weights along search path).
Example: Buy 1 share of $[5, 13]$.



Summary: LMSR AMM $\Leftrightarrow (+, \cdot)$ -RQRU

If the VC-dimension of (Ω, \mathcal{F}) is infinite, there is no sublinear time algorithm for RQRU using linear space [Chazelle and Welzl, 1989].

Set systems	VC-dim	Run time	Algorithm
Interval	2	$\theta(\log n)$	Interval tree
d-orthogonal set	$2d$	$O(n^{1-1/d})$	k-d tree
Hyperplane	$d+1$	$O(n^{1-1/d})$	Partition tree [Chan, 2010]
Permutations	Infinite (increasing in K)	no $o(n)$, $n = K!$	
Boolean	Infinite (increasing in K)	no $o(n)$, $n = 2^K$	

AMM \Leftrightarrow RQRU: Beyond LMSR

Scoring rule	Equivalence	Data structure
Log market scoring rule	$(+, \cdot)$ -RQRU	Partition tree
Quadratic market scoring rule	$(+, +)$ -RQRU	Partition (segment) tree
γ -power market scoring rule	$(+, \otimes)$ -RQRU	Partition tree

CFMM \Leftrightarrow RU: Combinatorial swap in DeFi

CFMM	Equivalence	Data structure
Logarithmic	$(+, \cdot)$ -RU	Partition tree
Constant sum	$(+, +)$ -RU	Partition tree
Geometric mean	$(\cdot, +)$ -RU	?

- Logarithmic trading function: $\phi(\mathbf{q}) = -\sum_w e^{-q_w/b}$
- Constant sum function: $\phi(\mathbf{q}) = \sum_w c_w q_w$
- Geometric mean function: $\phi(\mathbf{q}) = \prod_w q_w^{\gamma_w}$

CFMM \Leftrightarrow RU: Combinatorial swap in DeFi

CFMM	Equivalence	Data structure
Logarithmic	$(+, \cdot)$ -RU	Partition tree
Constant sum	$(+, +)$ -RU	Partition tree
Geometric mean	$(\cdot, +)$ -RU	?

- Logarithmic trading function: $\phi(\mathbf{q}) = -\sum_w e^{-q_w/b}$
- Constant sum function: $\phi(\mathbf{q}) = \sum_w c_w q_w$
- Geometric mean function: $\phi(\mathbf{q}) = \prod_w q_w^{\gamma_w}$

Intuition: Decomposable ϕ , i.e., compute $\phi(\mathbf{q})$ from q_w and $\phi(\mathbf{q}_{-w}, q'_w)$ in constant time. We determine the swap scale through a binary search by querying the trading function ϕ .

Traditional market implementation

- Predetermined discretizations, independent markets

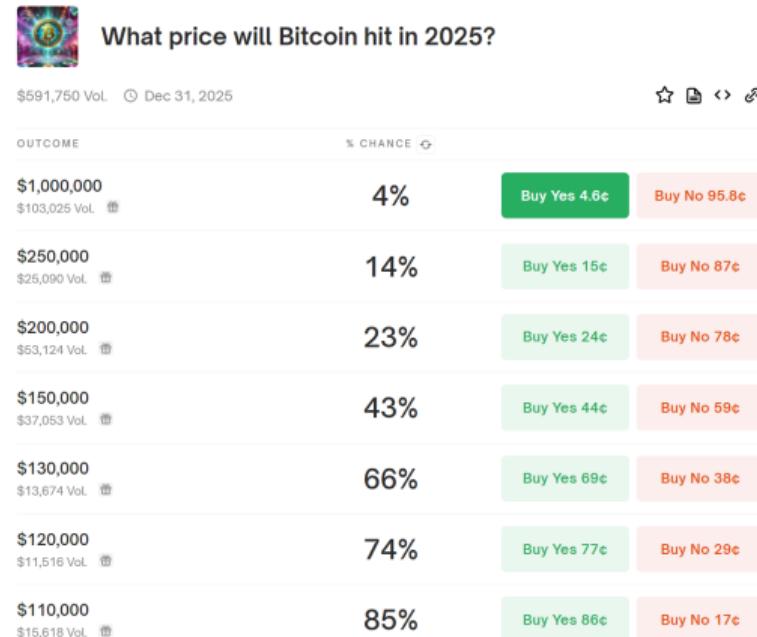
May suffer

- Thin market problem
- Logic inconsistency
- Arbitrage opportunities

- How about some combinatorial prediction market for large Ω ?

May need to trade off

- Expressiveness
- Computational complexity
- Worst-case loss / liquidity



Traditional market implementation

- Predetermined discretizations, independent markets

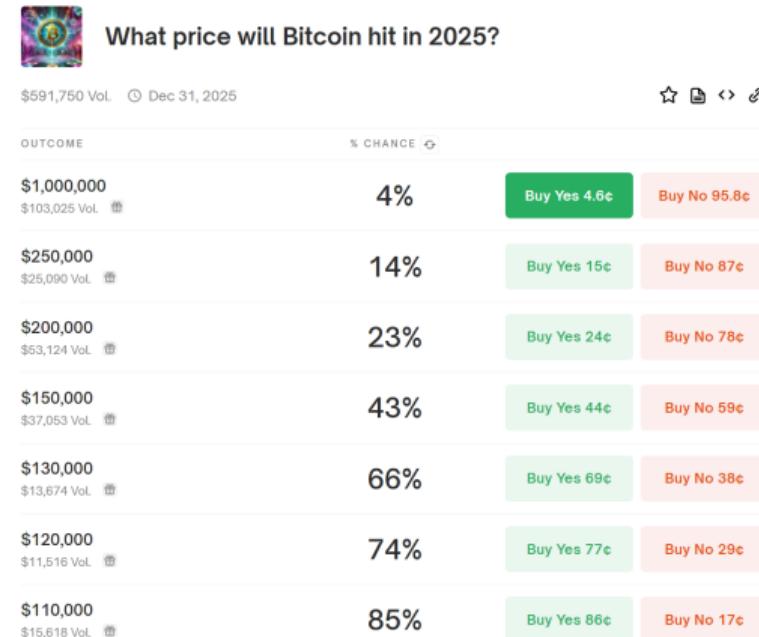
May suffer

- Thin market problem
- Logic inconsistency
- Arbitrage opportunities

- How about some combinatorial prediction market for large Ω ?

May need to trade off

- Expressiveness
- Computational complexity
- Worst-case loss / liquidity



Challenge: The worst-case loss (e.g., $b \log(n)$) grows with the number of outcomes.

1. Proper Scoring Rules
2. Generalized Scoring Rules
3. Prediction Markets
 - 3.1 What is a prediction market?
 - 3.2 Connection to scoring rules: Cost-function-based automated market makers (AMMs)
 - 3.3 Computational aspects of AMM designs
 - 3.4 Economic aspects of AMM designs
 - 3.5 Regulatory landscape and discussions

Multi-resolution linearly constrained AMM (LCMM): Interval securities

The tradeoff: the liquidity parameter controls

- How fast the price moves, i.e., $e^{s/b}$;
- The worst-case loss for AMM, e.g., $b \log(n)$.

Multi-resolution linearly constrained AMM (LCMM): Interval securities

The tradeoff: the liquidity parameter controls

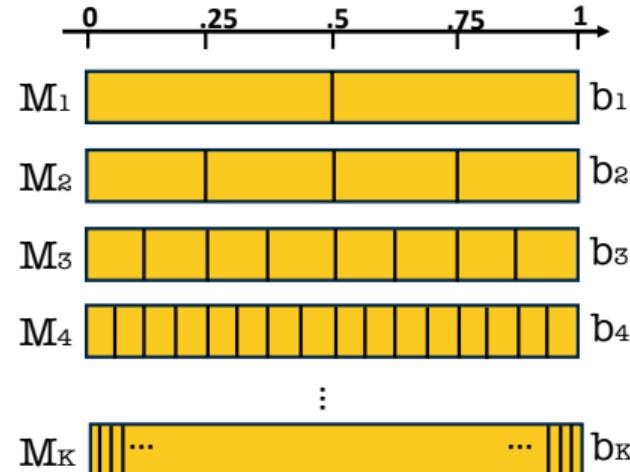
- How fast the price moves, i.e., $e^{s/b}$;
- The worst-case loss for AMM, e.g., $b \log(n)$.

The intuition

[Dudík et al., 2021, Hossain et al., 2025]

- Use multiple LMSR AMMs with different liquidity parameters to mediate markets offering interval securities at different resolutions (e.g., quarter, week, day, hour markets).
- Achieve constant loss bound by choosing proper liquidity values, e.g., $b_k = O(k^{-2.01})$:

$$\sum_{k=1}^K b_k \log(n_k) = \sum_{k=1}^K b_k \log(2^k)$$

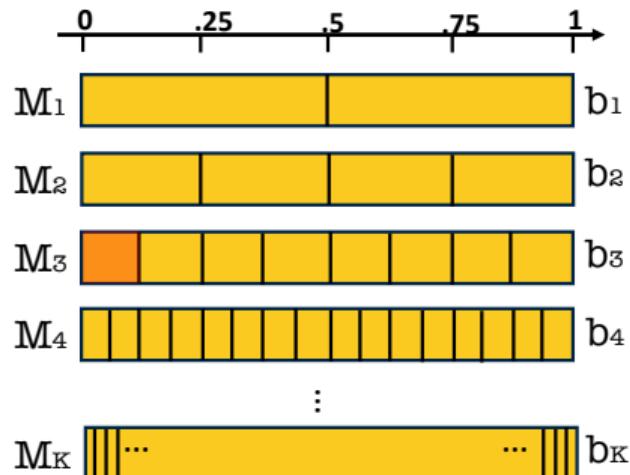


Multi-resolution linearly constrained AMM (LCMM): Interval securities

New challenge: keep prices coherent across different markets.

Buy(E, s)

- Example: Buy([0, 0.125), 1) in M_3 .
- Prices become incoherent between M_3 and other markets.

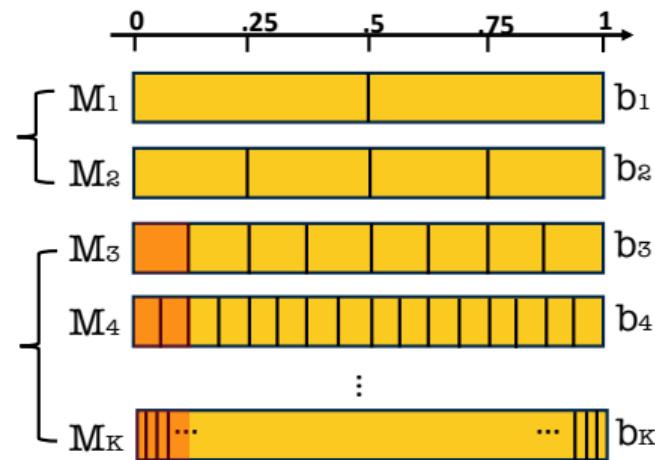


Multi-resolution linearly constrained AMM (LCMM): Interval securities

New challenge: keep prices coherent across different markets.

Buy(E, s)

- Example: Buy([0, 0.125), 1) in M_3 .
- Prices become incoherent between M_3 and other markets.
- Goal: Remove price incoherence (arbitrage) efficiently across markets.
- Intuition:
 - Split the 1 share among M_3, \dots, M_k according to liquidity ratio to maintain price coherence.

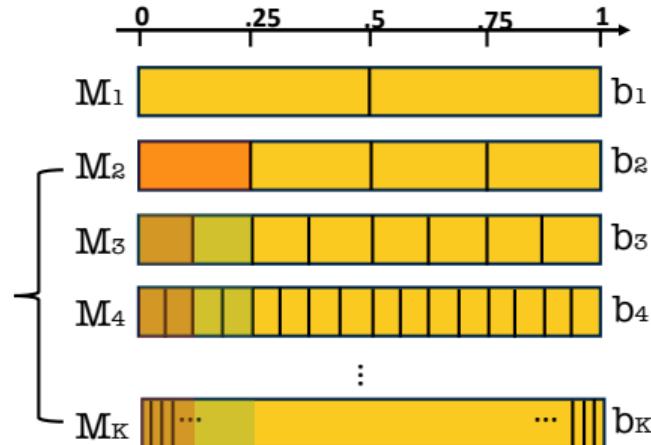


Multi-resolution linearly constrained AMM (LCMM): Interval securities

New challenge: keep prices coherent across different markets.

Buy(E, s)

- Example: Buy([0, 0.125), 1) in M_3 .
- Prices become incoherent between M_3 and other markets.
- Goal: Remove price incoherence (arbitrage) efficiently across markets.
- Intuition:
 - Split the 1 share among M_3, \dots, M_k according to liquidity ratio to maintain price coherence.
 - Remove arbitrage level by level up.

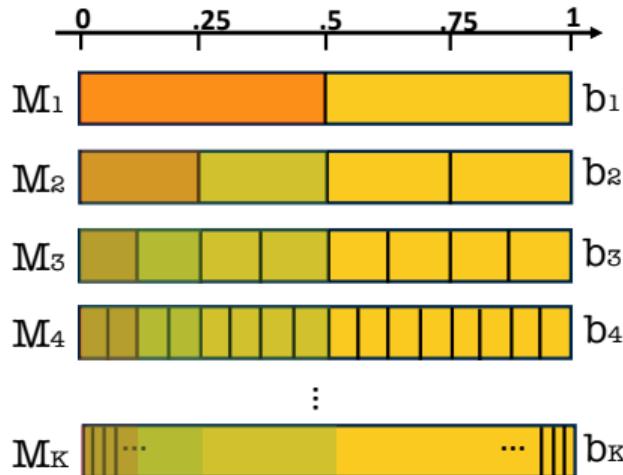


Multi-resolution linearly constrained AMM (LCMM): Interval securities

New challenge: keep prices coherent across different markets.

Buy(E, s)

- Example: Buy([0, 0.125), 1) in M_3 .
- Prices become incoherent between M_3 and other markets.
- Goal: Remove price incoherence (arbitrage) efficiently across markets.
- Intuition:
 - Split the 1 share among M_3, \dots, M_k according to liquidity ratio to maintain price coherence.
 - Remove arbitrage level by level up.



Buy s' share [0, 0.5) in M_1 and split sell s' share among M_2, \dots, M_k .

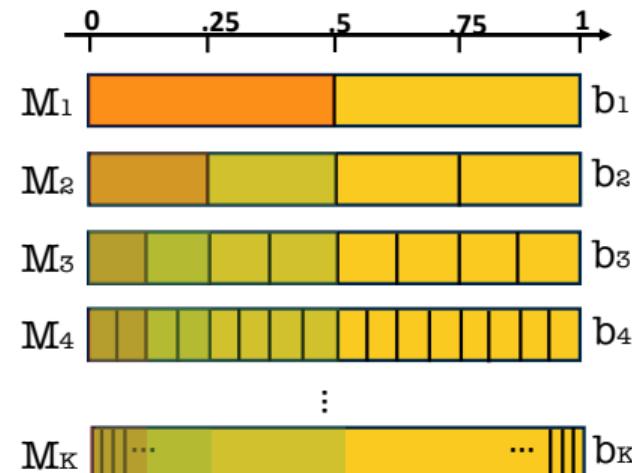
Multi-resolution linearly constrained AMM (LCMM): Interval securities

New challenge: keep prices coherent across different markets.

Multi-resolution LMSR AMM can remove price incoherence (arbitrage) efficiently across markets.

Use a single partition tree and keep track of

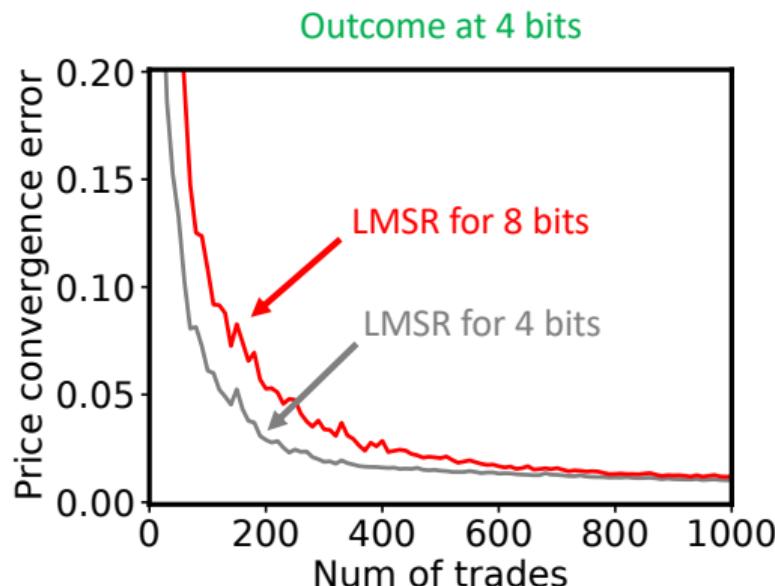
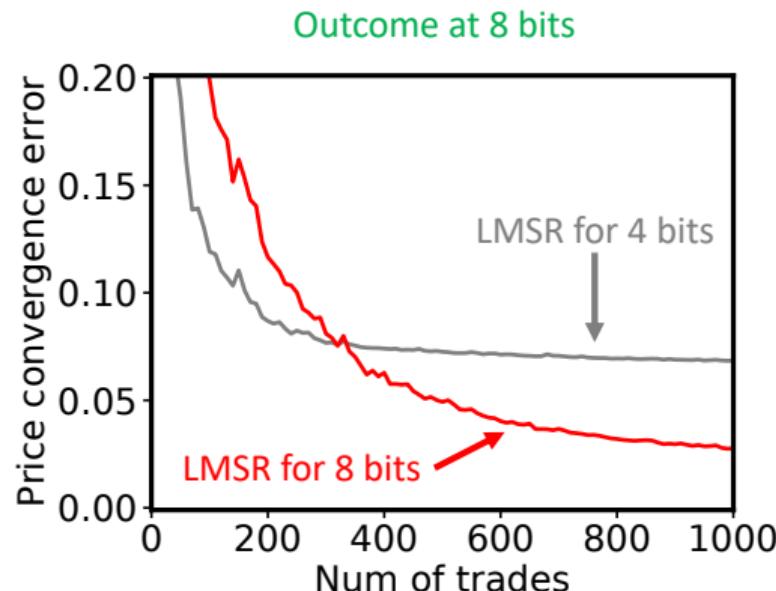
- Trader purchases;
- Automatic purchases made by the AMM for price coherence.



Buy s' share $[0, 0.5)$ in M_1 and split sell s' share among M_2, \dots, M_k .

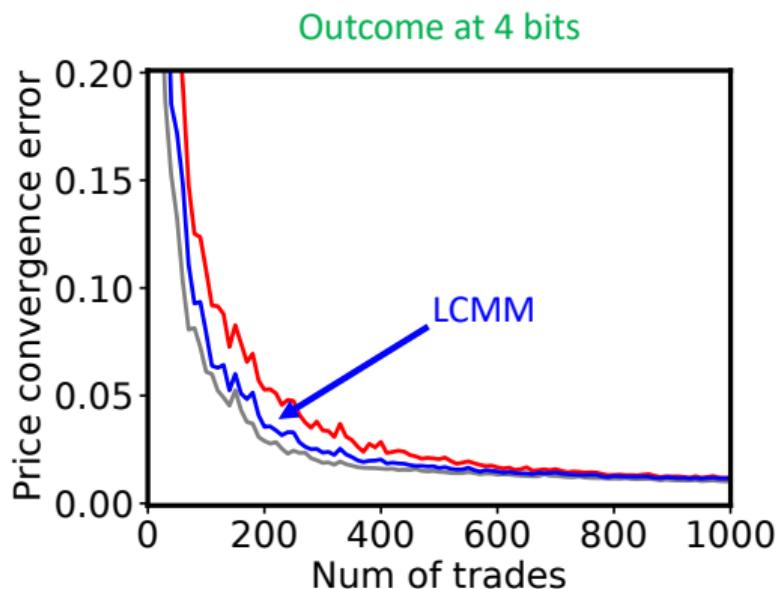
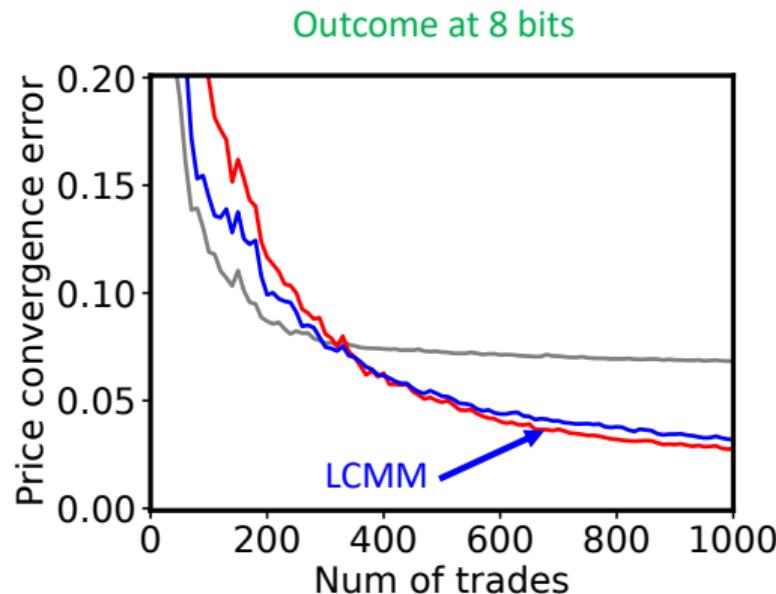
Empirical evaluation: Log-time LMSR vs. Multi-resolution LCMM

- Simulate trading in prediction markets where the MM has a fixed budget;
- Evaluate how fast prices converge to reach “consensus”.



Empirical evaluation: Log-time LMSR vs. Multi-resolution LCMM

- Compare to LCMM that equally splits the budget to two resolutions;
- LCMM achieves the best of both worlds: Elicit forecasts at the finer level & obtain a fast convergence at the coarser level.



1. Proper Scoring Rules
2. Generalized Scoring Rules
3. Prediction Markets
 - 3.1 What is a prediction market?
 - 3.2 Connection to scoring rules: Cost-function-based automated market makers (AMMs)
 - 3.3 Computational aspects of AMM designs
 - 3.4 Economic aspects of AMM designs
 - 3.5 Regulatory landscape and discussions

Regulatory landscape

- Federal Regulation: Commodity Futures Trading Commission (CFTC)
 - Example: Kalshi, the only fully compliant US exchange.
 - Status: Designated contract market
 - Trades are treated as derivatives/futures (binary options).

Regulatory landscape

- Federal Regulation: Commodity Futures Trading Commission (CFTC)
 - Example: Kalshi, the only fully compliant US exchange.
 - Status: Designated contract market
 - Trades are treated as derivatives/futures (binary options).
- Sweepstakes model
 - Example: Manifold (Sweep)
 - Status: Users buy virtual currency but receive “Sweepcash” as a free bonus.
Legally distinct from gambling.

Regulatory landscape

- Federal Regulation: Commodity Futures Trading Commission (CFTC)
 - Example: Kalshi, the only fully compliant US exchange.
 - Status: Designated contract market
 - Trades are treated as derivatives/futures (binary options).
- Sweepstakes model
 - Example: Manifold (Sweep)
 - Status: Users buy virtual currency but receive “Sweepcash” as a free bonus.
Legally distinct from gambling.
- DeFi
 - Example: Polymarket
 - Status: Blocked in US; 2022 settlement: Polymarket agreed to block US IP addresses.

Regulatory landscape

- Federal Regulation: Commodity Futures Trading Commission (CFTC)
 - Example: Kalshi, the only fully compliant US exchange.
 - Status: Designated contract market
 - Trades are treated as derivatives/futures (binary options).
- Sweepstakes model
 - Example: Manifold (Sweep)
 - Status: Users buy virtual currency but receive “Sweepcash” as a free bonus. Legally distinct from gambling.
- DeFi
 - Example: Polymarket
 - Status: Blocked in US; 2022 settlement: Polymarket agreed to block US IP addresses.
- Current Legal Conflict
 - *Kalshi v. CFTC (2024)*: Current legal battle (Kalshi v. CFTC) regarding whether betting on elections constitutes *gaming* (illegal) or *hedging* (legal).

Open problems and discussions

- Computational complexity of combinatorial markets

How can we design market mechanisms that allow for expressive betting but remain computationally tractable?

Open problems and discussions

- Computational complexity of combinatorial markets

How can we design market mechanisms that allow for expressive betting but remain computationally tractable?

- Conditional triviality

Can we incentivize or elicit accurate forecasting on conditional branches that might never happen (counterfactuals)?

Open problems and discussions

- Computational complexity of combinatorial markets
How can we design market mechanisms that allow for expressive betting but remain computationally tractable?
- Conditional triviality
Can we incentivize or elicit accurate forecasting on conditional branches that might never happen (counterfactuals)?
- Manipulation resistance
Can we design AMMs to differentiate profit-maximizing and outcome-maximizing?

Open problems and discussions

- Computational complexity of combinatorial markets
How can we design market mechanisms that allow for expressive betting but remain computationally tractable?
- Conditional triviality
Can we incentivize or elicit accurate forecasting on conditional branches that might never happen (counterfactuals)?
- Manipulation resistance
Can we design AMMs to differentiate profit-maximizing and outcome-maximizing?
- Privacy-preserving market
Can we build a market using ZKPs where the AMM can verify the validity/solvency of the trade without knowing who the user is or which outcome they are betting on?

Open problems and discussions

- Computational complexity of combinatorial markets
How can we design market mechanisms that allow for expressive betting but remain computationally tractable?
- Conditional triviality
Can we incentivize or elicit accurate forecasting on conditional branches that might never happen (counterfactuals)?
- Manipulation resistance
Can we design AMMs to differentiate profit-maximizing and outcome-maximizing?
- Privacy-preserving market
Can we build a market using ZKPs where the AMM can verify the validity/solvency of the trade without knowing who the user is or which outcome they are betting on?
- Capital efficiency & leverage

- Buja, A., Stuetzle, W., and Shen, Y. (2005).
Loss functions for binary class probability estimation and classification: Structure and applications.
- Chan, T. M. (2010).
Optimal partition trees.
In *Proceedings of the twenty-sixth annual symposium on Computational geometry*, pages 1–10.
- Chazelle, B. and Welzl, E. (1989).
Quasi-optimal range searching in spaces of finite vc-dimension.
Discrete & Computational Geometry, 4.
- Chen, Y., Fortnow, L., Lambert, N. S., Pennock, D. M., and Wortman, J. (2008).
Complexity of combinatorial market makers.
CoRR, abs/0802.1362.
- Chen, Y., Fortnow, L., Nikolova, E., and Pennock, D. M. (2007).
Combinatorial betting.

- Chen, Y. and Pennock, D. M. (2012).
A utility framework for bounded-loss market makers.
arXiv preprint arXiv:1206.5252.
- Chen, Y. and Yu, F. (2021).
Optimal scoring rule design.
CoRR, abs/2107.07420.
- Dudík, M., Wang, X., Pennock, D. M., and Rothschild, D. M. (2021).
Log-time prediction markets for interval securities.
CoRR, abs/2102.07308.
- Frongillo, R. and Kash, I. (2014).
General truthfulness characterizations via convex analysis.
In *International Conference on Web and Internet Economics*, pages 354–370. Springer.
- Frongillo, R. and Witkowski, J. (2017).
A geometric perspective on minimal peer prediction.

- Frongillo, R. M., Papireddygari, M., and Waggoner, B. (2024).
An axiomatic characterization of cfmms and equivalence to prediction markets.
In Guruswami, V., editor, *15th Innovations in Theoretical Computer Science Conference, ITCS 2024, January 30 to February 2, 2024, Berkeley, CA, USA*, volume 287 of *LIPics*, pages 51:1–51:21. Schloss Dagstuhl - Leibniz-Zentrum für Informatik.
- Gneiting, T. and Raftery, A. E. (2007).
Strictly proper scoring rules, prediction, and estimation.
Journal of the American Statistical Association, 102(477):359–378.
- Hanson, R. D. (2003).
Combinatorial information market design.
Information Systems Frontiers, 5(1):107–119.
- Hanson, R. D. (2007).
Logarithmic market scoring rules for modular combinatorial information aggregation.
Journal of Prediction Markets, 1(1):1–15.

- Hartline, J. D., Li, Y., Shan, L., and Wu, Y. (2020).
Optimization of scoring rules.
CoRR, abs/2007.02905.
- Hossain, P. S., Wang, X., and Yu, F. (2025).
Designing automated market makers for combinatorial securities: A geometric viewpoint.
In Azar, Y. and Panigrahi, D., editors, *Proceedings of the 2025 Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2025, New Orleans, LA, USA, January 12-15, 2025*, pages 1329–1365. SIAM.
- Kleinberg, B., Leme, R. P., Schneider, J., and Teng, Y. (2023).
U-calibration: Forecasting for an unknown agent.
In *The Thirty Sixth Annual Conference on Learning Theory*, pages 5143–5145. PMLR.
- Kong, Y. and Schoenebeck, G. (2019).
An information theoretic framework for designing information elicitation mechanisms that reward truth-telling.
ACM Trans. Econ. Comput., 7(1).

- Lambert, N. and Shoham, Y. (2009).
Eliciting truthful answers to multiple-choice questions.
In *Proceedings of the 10th ACM Conference on Electronic Commerce*, EC '09, page 109–118, New York, NY, USA. Association for Computing Machinery.
- Lambert, N. S., Langford, J., Wortman Vaughan, J., Chen, Y., Reeves, D. M., Shoham, Y., and Pennock, D. M. (2015).
An axiomatic characterization of wagering mechanisms.
Journal of Economic Theory, 156:389–416.
Computer Science and Economic Theory.
- Liu, Y., Wang, J., and Chen, Y. (2023).
Surrogate scoring rules.
ACM Transactions on Economics and Computation, 10(3):1–36.
- Lu, Y., Xu, S., Zhang, Y., Kong, Y., and Schoenebeck, G. (2024).
Eliciting informative text evaluations with large language models.
- Miller, N., Resnick, P., and Zeckhauser, R. (2005).

Eliciting informative feedback: The peer-prediction method.
Management Science, pages 1359–1373.

- Prelec, D. (2004).
A Bayesian Truth Serum for subjective data.
Science, 306(5695):462–466.
- Rochet, J. C. (1985).
The taxation principle and multi-time hamilton-jacobi equations.
Journal of Mathematical Economics, 14(2):113–128.
- Schoenebeck, G. and Yu, F. (2020).
Learning and strongly truthful multi-task peer prediction: A variational approach.
CoRR, abs/2009.14730.
- Schoenebeck, G. and Yu, F.-Y. (2023).
Two strongly truthful mechanisms for three heterogeneous agents answering one question.
ACM Transactions on Economics and Computation, 10(4):1–26.

- Wang, X., Pennock, D. M., Devanur, N. R., Rothschild, D. M., Tao, B., and Wellman, M. P. (2021).
Designing a combinatorial financial options market.
In *Proceedings of the 22nd ACM Conference on Economics and Computation (EC)*,
page 864–883.
- Xia, Z. (2025).
Expert incentives under partially contractible states.